The post NVIDIA Unveils Neural Innovations to Revolutionize Robot Learning appeared on BitcoinEthereumNews.com. Ted Hisokawa Sep 26, 2025 10:23 NVIDIA introduces three groundbreaking neural technologies aimed at enhancing robot learning, bridging the gap between simulation and real-world applications. NVIDIA has unveiled a trio of neural advancements designed to propel robot learning into new realms, according to NVIDIA Research. These innovations were highlighted during the Conference on Robot Learning (CoRL) 2025, showcasing significant strides in how robots can learn and adapt to complex real-world tasks. Neural Robot Dynamics (NeRD) The first of these innovations, Neural Robot Dynamics (NeRD), enhances simulation capabilities by integrating learned dynamics models. These models are capable of generalizing across different tasks while allowing for real-world fine-tuning. This approach replaces traditional low-level dynamics in simulators, enabling a hybrid framework that effectively bridges the gap between simulation and reality. NeRD has demonstrated remarkable accuracy, achieving less than 0.1% error in simulations involving the ANYmal quadruped robot. This model’s ability to adapt real-world data further narrows the simulation-to-reality gap, offering a robust tool for developers working on intricate robotic systems. Reference-Scoped Exploration (RSE) Another breakthrough, Reference-Scoped Exploration (RSE), focuses on enhancing robotic dexterity by leveraging human motion capture data. By treating human demonstrations as adaptive guidance rather than strict templates, RSE allows robots to autonomously discover motions that suit their unique configurations. This method shows a significant improvement in success rates, especially when tested on the Inspire and Allegro robotic hands. Vision-Tactile Refinement (VT-Refine) Lastly, VT-Refine combines vision and tactile sensing to tackle precise bimanual assembly tasks. This innovative approach employs a real-to-sim-to-real framework, wherein limited real-world demonstrations are used to pretrain policies which are then fine-tuned in simulation environments. The outcome is a notable enhancement in task performance, with real-world success rates improving by up to 40%. The integration of visual and tactile feedback… The post NVIDIA Unveils Neural Innovations to Revolutionize Robot Learning appeared on BitcoinEthereumNews.com. Ted Hisokawa Sep 26, 2025 10:23 NVIDIA introduces three groundbreaking neural technologies aimed at enhancing robot learning, bridging the gap between simulation and real-world applications. NVIDIA has unveiled a trio of neural advancements designed to propel robot learning into new realms, according to NVIDIA Research. These innovations were highlighted during the Conference on Robot Learning (CoRL) 2025, showcasing significant strides in how robots can learn and adapt to complex real-world tasks. Neural Robot Dynamics (NeRD) The first of these innovations, Neural Robot Dynamics (NeRD), enhances simulation capabilities by integrating learned dynamics models. These models are capable of generalizing across different tasks while allowing for real-world fine-tuning. This approach replaces traditional low-level dynamics in simulators, enabling a hybrid framework that effectively bridges the gap between simulation and reality. NeRD has demonstrated remarkable accuracy, achieving less than 0.1% error in simulations involving the ANYmal quadruped robot. This model’s ability to adapt real-world data further narrows the simulation-to-reality gap, offering a robust tool for developers working on intricate robotic systems. Reference-Scoped Exploration (RSE) Another breakthrough, Reference-Scoped Exploration (RSE), focuses on enhancing robotic dexterity by leveraging human motion capture data. By treating human demonstrations as adaptive guidance rather than strict templates, RSE allows robots to autonomously discover motions that suit their unique configurations. This method shows a significant improvement in success rates, especially when tested on the Inspire and Allegro robotic hands. Vision-Tactile Refinement (VT-Refine) Lastly, VT-Refine combines vision and tactile sensing to tackle precise bimanual assembly tasks. This innovative approach employs a real-to-sim-to-real framework, wherein limited real-world demonstrations are used to pretrain policies which are then fine-tuned in simulation environments. The outcome is a notable enhancement in task performance, with real-world success rates improving by up to 40%. The integration of visual and tactile feedback…

NVIDIA Unveils Neural Innovations to Revolutionize Robot Learning



Ted Hisokawa
Sep 26, 2025 10:23

NVIDIA introduces three groundbreaking neural technologies aimed at enhancing robot learning, bridging the gap between simulation and real-world applications.





NVIDIA has unveiled a trio of neural advancements designed to propel robot learning into new realms, according to NVIDIA Research. These innovations were highlighted during the Conference on Robot Learning (CoRL) 2025, showcasing significant strides in how robots can learn and adapt to complex real-world tasks.

Neural Robot Dynamics (NeRD)

The first of these innovations, Neural Robot Dynamics (NeRD), enhances simulation capabilities by integrating learned dynamics models. These models are capable of generalizing across different tasks while allowing for real-world fine-tuning. This approach replaces traditional low-level dynamics in simulators, enabling a hybrid framework that effectively bridges the gap between simulation and reality.

NeRD has demonstrated remarkable accuracy, achieving less than 0.1% error in simulations involving the ANYmal quadruped robot. This model’s ability to adapt real-world data further narrows the simulation-to-reality gap, offering a robust tool for developers working on intricate robotic systems.

Reference-Scoped Exploration (RSE)

Another breakthrough, Reference-Scoped Exploration (RSE), focuses on enhancing robotic dexterity by leveraging human motion capture data. By treating human demonstrations as adaptive guidance rather than strict templates, RSE allows robots to autonomously discover motions that suit their unique configurations. This method shows a significant improvement in success rates, especially when tested on the Inspire and Allegro robotic hands.

Vision-Tactile Refinement (VT-Refine)

Lastly, VT-Refine combines vision and tactile sensing to tackle precise bimanual assembly tasks. This innovative approach employs a real-to-sim-to-real framework, wherein limited real-world demonstrations are used to pretrain policies which are then fine-tuned in simulation environments. The outcome is a notable enhancement in task performance, with real-world success rates improving by up to 40%.

The integration of visual and tactile feedback is pivotal in these tasks, allowing robots to perform complex assemblies previously achievable only by human hands. This method exemplifies how simulations can be used to prepare robots for real-world applications, significantly enhancing their operational capabilities.

These developments mark a significant step forward in the field of robotics, as they provide a scalable, data-driven approach to teaching robots complex skills. By narrowing the gap between robotic and human capabilities, NVIDIA’s research continues to push the boundaries of what is possible in robot learning and adaptation.

Image source: Shutterstock


Source: https://blockchain.news/news/nvidia-neural-innovations-robot-learning

Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

The post China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise appeared on BitcoinEthereumNews.com. China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise China’s internet regulator has ordered the country’s biggest technology firms, including Alibaba and ByteDance, to stop purchasing Nvidia’s RTX Pro 6000D GPUs. According to the Financial Times, the move shuts down the last major channel for mass supplies of American chips to the Chinese market. Why Beijing Halted Nvidia Purchases Chinese companies had planned to buy tens of thousands of RTX Pro 6000D accelerators and had already begun testing them in servers. But regulators intervened, halting the purchases and signaling stricter controls than earlier measures placed on Nvidia’s H20 chip. Image: Nvidia An audit compared Huawei and Cambricon processors, along with chips developed by Alibaba and Baidu, against Nvidia’s export-approved products. Regulators concluded that Chinese chips had reached performance levels comparable to the restricted U.S. models. This assessment pushed authorities to advise firms to rely more heavily on domestic processors, further tightening Nvidia’s already limited position in China. China’s Drive Toward Tech Independence The decision highlights Beijing’s focus on import substitution — developing self-sufficient chip production to reduce reliance on U.S. supplies. “The signal is now clear: all attention is focused on building a domestic ecosystem,” said a representative of a leading Chinese tech company. Nvidia had unveiled the RTX Pro 6000D in July 2025 during CEO Jensen Huang’s visit to Beijing, in an attempt to keep a foothold in China after Washington restricted exports of its most advanced chips. But momentum is shifting. Industry sources told the Financial Times that Chinese manufacturers plan to triple AI chip production next year to meet growing demand. They believe “domestic supply will now be sufficient without Nvidia.” What It Means for the Future With Huawei, Cambricon, Alibaba, and Baidu stepping up, China is positioning itself for long-term technological independence. Nvidia, meanwhile, faces…
Share
BitcoinEthereumNews2025/09/18 01:37
Gold continues to hit new highs. How to invest in gold in the crypto market?

Gold continues to hit new highs. How to invest in gold in the crypto market?

As Bitcoin encounters a "value winter", real-world gold is recasting the iron curtain of value on the blockchain.
Share
PANews2025/04/14 17:12
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Share
BitcoinEthereumNews2025/09/18 00:41