The discussion compares BSGAL to existing methods, noting its efficient use of gradient cache to reduce runtime.The discussion compares BSGAL to existing methods, noting its efficient use of gradient cache to reduce runtime.

Future of GAL: Dynamic Filtering Strategies and Generative Model in the Loop

2025/12/09 10:57

Abstract and 1 Introduction

  1. Related work

    2.1. Generative Data Augmentation

    2.2. Active Learning and Data Analysis

  2. Preliminary

  3. Our method

    4.1. Estimation of Contribution in the Ideal Scenario

    4.2. Batched Streaming Generative Active Learning

  4. Experiments and 5.1. Offline Setting

    5.2. Online Setting

  5. Conclusion, Broader Impact, and References

    \

A. Implementation Details

B. More ablations

C. Discussion

D. Visualization

C. Discussion

C.1. Comparing with existing methods

\ We’ve drawn the Table 11, analyzing our setting compared to previous active learning or generative data filtration methods. We’ve conducted analysis from aspects of data scale, whether it’s oriented towards downstream tasks, label quality, labeling costs, and whether there exists domain difference (between generated and real data).

C.2. Analysis of the computational cost

We recorded the training duration and GPU memory usage for training 90,000 iterations with 4 Nvidia 4090 GPUs. It can be observed that our method based on Grad cache increases the GPU memory usage compared to Loss estimate, but it significantly reduces the training time. Compared with our Baseline, the additional time and memory overheads are within an acceptable range.

\ Table 12. Analysis of the computational cost of different algorithms

C.3. Future work

We hope that this paper can provide more inspiration to the academic community on how to utilize generated data and how to design better data analysis methods. It should be pointed out that our method is not limited to specific tasks or specific model architectures. In this work, for the convenience of comparison with the baseline, we use the same dataset and model architecture as the baseline. We hope that in future work, we can further verify it on more tasks and model architectures. At the same time, we can also design more flexible and controllable evaluation functions to better utilize generated data. For example, in this paper, when filtering the data with a gradient, there is a trade-off between diversity and consistency. For rare categories in the data, due to the small number of real data itself, diversity should be considered more, while for common categories, due to the large number of real data itself, consistency should be considered more. Therefore, in the future, we can consider adopting a dynamic strategy for different categories. In the long run, our current research is done under the premise of a fixed generative model. A more ideal situation is to involve the generative model in this loop, further optimizing the generative model based on the downstream model’s feedback, to achieve a true “generative model in the loop”.

\

:::info Authors:

(1) Muzhi Zhu, with equal contribution from Zhejiang University, China;

(2) Chengxiang Fan, with equal contribution from Zhejiang University, China;

(3) Hao Chen, Zhejiang University, China (haochen.cad@zju.edu.cn);

(4) Yang Liu, Zhejiang University, China;

(5) Weian Mao, Zhejiang University, China and The University of Adelaide, Australia;

(6) Xiaogang Xu, Zhejiang University, China;

(7) Chunhua Shen, Zhejiang University, China (chunhuashen@zju.edu.cn).

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Upbit to Raise Cold Wallet Ratio to 99% Amid Liquidity Concerns

Upbit to Raise Cold Wallet Ratio to 99% Amid Liquidity Concerns

The post Upbit to Raise Cold Wallet Ratio to 99% Amid Liquidity Concerns appeared on BitcoinEthereumNews.com. South Korea’s largest cryptocurrency exchange, Upbit, announced plans to increase its cold wallet storage ratio to 99%, following a major security breach last month. The announcement comes as part of a comprehensive security overhaul following hackers’ theft of approximately 44.5 billion won ($31 million) in Solana-based assets on November 27. Upbit Strengthens Security After Second November 27 Breach According to operator Dunamu, Upbit currently maintains 98.33% of customer digital assets in cold storage as of late October, with only 1.67% held in hot wallets. The exchange stated it has completed a full wallet infrastructure overhaul and aims to reduce hot wallet holdings to below 1% in the coming months. Dunamu emphasized that customer asset protection remains Upbit’s top priority, with all breach-related losses covered by the company’s reserves. Sponsored Sponsored The breach marked Upbit’s second major hack on the same date six years ago. In 2019, North Korean hacking groups Lazarus and Andariel stole 342,000 ETH from the exchange’s hot wallet. This time, attackers drained 24 different Solana network tokens in just 54 minutes during the early morning hours. Under South Korea’s Virtual Asset User Protection Act, exchanges must store at least 80% of customer assets in cold wallets. Upbit significantly exceeds this threshold and maintains the lowest hot wallet ratio among domestic exchanges. Data released by lawmaker Huh Young showed that other Korean exchanges were operating with cold wallet ratios of 82% to 90% as of June. Upbit Outpaces Global Industry Standards Upbit’s security metrics compare favorably with those of major global exchanges. Coinbase stores approximately 98% of customer funds in cold storage, while Kraken maintains 95-97% of its funds offline. OKX, Gate.io, and MEXC each keep around 95% of their funds in cold wallets. Binance and Bybit have not disclosed specific ratios but emphasize that the majority of…
Share
BitcoinEthereumNews2025/12/10 13:37
Tidal Trust Files For ‘Bitcoin AfterDark ETF’, Could Off-Hours Trading Boost Returns?

Tidal Trust Files For ‘Bitcoin AfterDark ETF’, Could Off-Hours Trading Boost Returns?

The post Tidal Trust Files For ‘Bitcoin AfterDark ETF’, Could Off-Hours Trading Boost Returns? appeared on BitcoinEthereumNews.com. Tidal Trust has filed for the first Bitcoin AfterDark ETF with the U.S. SEC. The product looks to capture overnight price movements of the token. What Is the Bitcoin AfterDark ETF? Tidal Trust has filed with the SEC for its proposed Bitcoin AfterDark ETF product. It is an ETF that would hold the coin only during non-trading hours in the United States. This filing also seeks permission for two other BTC-linked products managed with Nicholas Wealth Management. Source: SEC According to the registration documents, the ETF would buy Bitcoin at the close of U.S. markets and then sell the position the following morning upon the reopening of trading. In other words, it will effectively hold BTC only over the night “The fund trades those instruments during U.S. overnight hours and closes them out shortly after the U.S. market opens each trading day,” the filing said. During the day, the fund’s assets switch to U.S. Treasuries, money-market funds, and similar cash instruments. That means even when the fund has 100% notional exposure to Bitcoin overnight, a substantial portion of its capital may still sit in Treasuries during the day. Eric Balchunas, senior ETF analyst cited earlier research and said, “most of Bitcoin’s gains historically occur outside U.S. market hours.” If those patterns persist, the Bitcoin AfterDark ETF token will outperform more traditional spot BTC products, he said. Source: X Balchunas added that the effect may be partly driven by positioning in existing Bitcoin ETFs and related derivatives activity. The SEC has of late taken an increasingly more accommodating approach toward crypto-related ETFs. This September, for instance, REX Shares launched the first Ethereum Staking ETF. It represented direct ETH exposure and paid out on-chain staking rewards.  Also on Tuesday, BlackRock filed an application for an iShares Staked Ethereum ETF. The filing states…
Share
BitcoinEthereumNews2025/12/10 13:00
Tempo Testnet Goes Live with Stablecoin Tools and Expanded Partners

Tempo Testnet Goes Live with Stablecoin Tools and Expanded Partners

The post Tempo Testnet Goes Live with Stablecoin Tools and Expanded Partners appeared on BitcoinEthereumNews.com. The Tempo testnet, developed by Stripe and Paradigm, is now live, enabling developers to run nodes, sync the chain, and test stablecoin features for payments. This open-source platform emphasizes scale, reliability, and integration, paving the way for instant settlements on a dedicated layer-1 blockchain. Tempo testnet launches with six core features, including stablecoin-native gas and fast finality, optimized for financial applications. Developers can create stablecoins directly in browsers using the TIP-20 standard, enhancing accessibility for testing. The project has secured $500 million in funding at a $5 billion valuation, with partners like Mastercard and Klarna driving adoption; Klarna launched a USD-pegged stablecoin last month. Discover the Tempo testnet launch by Stripe and Paradigm: test stablecoins, run nodes, and explore payment innovations on this layer-1 blockchain. Join developers in shaping the future of crypto payments today. What is the Tempo Testnet? Tempo testnet represents a pivotal milestone in the development of a specialized layer-1 blockchain for payments, created through a collaboration between Stripe and Paradigm. This public testnet allows participants to run nodes, synchronize the chain, and experiment with essential features tailored for stablecoin operations and financial transactions. By focusing on instant settlements and low fees, it addresses key limitations in traditional blockchains for real-world payment use cases. Source: Patrick Collison The Tempo testnet builds on the project’s foundation, which was first announced four months ago, with an emphasis on developer-friendly tools. It supports a range of functionalities that prioritize reliability and scalability, making it an ideal environment for testing before the mainnet rollout. As per the official announcement from Tempo, this phase will involve ongoing enhancements, including new infrastructure partnerships and stress tests under simulated payment volumes. One of the standout aspects of the Tempo testnet is its open-source nature, inviting broad community involvement. This approach not only accelerates development…
Share
BitcoinEthereumNews2025/12/10 13:01