This paper focuses on federated learning for user authentication. We show that it is difficult to achieve both privacy preservation and high accuracy with existing methods. We propose Identity Protected Federated Learning (IPFed) as a solution to this problem.This paper focuses on federated learning for user authentication. We show that it is difficult to achieve both privacy preservation and high accuracy with existing methods. We propose Identity Protected Federated Learning (IPFed) as a solution to this problem.

Struggling with GDPR-Compliant AI? IPFed Delivers Accuracy and Privacy

:::info Authors:

(1) Yosuke Kaga, Hitachi, Ltd., Japan;

(2) Yusei Suzuki, Hitachi, Ltd., Japan;

(3) Kenta Takahashi, Hitachi, Ltd., Japan.

:::

Abstract and I. Introduction

II. Related Work

III. IPFED

IV. Experiments

[V. Conclusion and References]()

\ Abstract—With the development of laws and regulations related to privacy preservation, it has become difficult to collect personal data to perform machine learning. In this context, federated learning, which is distributed learning without sharing personal data, has been proposed. In this paper, we focus on federated learning for user authentication. We show that it is difficult to achieve both privacy preservation and high accuracy with existing methods. To address these challenges, we propose IPFed which is privacy-preserving federated learning using random projection for class embedding. Furthermore, we prove that IPFed is capable of learning equivalent to the state-of-the-art method. Experiments on face image datasets show that IPFed can protect the privacy of personal data while maintaining the accuracy of the state-of-the-art method.

I. INTRODUCTION

User authentication, such as face recognition, has recently achieved dramatic improvements in accuracy through the application of deep learning, and one of the reasons for this is that large numbers of images have been collected through web crawling and used as training data [1]. However, in recent years, GDPR [2] and other privacy-related regulations have made it more difficult to collect personal data. In order to continue to improve the accuracy of user authentication, Privacy-Preserving Machine Learning (PPML) [3] is needed, which performs machine learning without directly collecting personal data. One of the most popular methods in PPML is federated learning [4], which can perform privacy-preserving distributed learning using personal data on the client, and it has attracted attention. Federated learning has been applied to user authentication [5]–[8]. However, these methods face the challenges of privacy of training data [5], [6] and model accuracy [7], [8]. We propose Identity Protected Federated Learning (IPFed) as a solution to this problem. The main contributions of our work are as follows.

\ • We develop IPFed, which is a method to perform federated learning for user authentication while preserving the privacy of personal data using random projection for class embeddings.

\ • We prove mathematically that IPFed can perform equivalent learning to the state-of-the-art method while preserving the privacy of the training data.

\ • Experiments on face image datasets show that the proposed method can learn models with equivalent accuracy to the state-of-the-art method.

\ Fig. 1. Federated learning for user authentication.

II. RELATED WORKS

A. Federated learning

\ Federated learning is a method of machine learning in which training data is not shared but distributed across multiple devices. A typical federated learning algorithm is federated averaging (FedAvg) [4]. In this method, machine learning is performed while the personal data is kept in the clients, thus the privacy of training data can be preserved.

\ B. Federated learning for user authentication

\ Federated learning for user authentication is a method of learning a discriminator based on personal data such as fingerprints, faces, veins, etc., to determine a person’s identity. An overview of federated learning for user authentication is shown in Fig.1. Since a client is often occupied by a single person in user authentication, it is natural for a single client to contain the personal data of only one user. Under this assumption, it is difficult to train a model that can discriminate between others because it is not possible for the client to refer to the personal data of others.

\ Two main approaches have been proposed to solve this problem. The first one is [5], [6], a method where the learning server performs the learning to increase the distance between the embeddings of the others, and the second is [7], [8], a method where the clients randomly assign representative embeddings for each class (called class embedding). In the following, we will give an overview of each method.

\ FedAwS [5], FedFace [6]: Federated Averaging with Spreadout (FedAwS) [5] is the algorithm to realize federated learning for user authentication by learning to increase the distance between each other’s embeddings on the learning server side. Furthermore, Aggarwal et.al. introduce FedFace, which applies FedAwS to face recognition[6].

Hosseini at.el. [7], [8]: Next, we outline the second approach [7], [8]. In this method, class embeddings are randomly initialized and frozen on the client side, and are not shared with the learning server in order to preserve the privacy of the training data. The clients use the fixed class embedding to train the model, and the learning server aggregates the training results and updates the model parameter

\ C. Challenging of related work

From the above discussion, as far as we know, there is no method that can perform federated learning for user authentication with both high accuracy and privacy preservation of training data. Satisfying these two requirements is an important problem to be solved in the field of federated learning for user authentication.

\

:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56
XLM Price Prediction: Stellar Targets $0.26-$0.27 Range by February 2026

XLM Price Prediction: Stellar Targets $0.26-$0.27 Range by February 2026

The post XLM Price Prediction: Stellar Targets $0.26-$0.27 Range by February 2026 appeared on BitcoinEthereumNews.com. Zach Anderson Jan 14, 2026 13:31 XLM
Share
BitcoinEthereumNews2026/01/15 10:06
Adoption Leads Traders to Snorter Token

Adoption Leads Traders to Snorter Token

The post Adoption Leads Traders to Snorter Token appeared on BitcoinEthereumNews.com. Largest Bank in Spain Launches Crypto Service: Adoption Leads Traders to Snorter Token Sign Up for Our Newsletter! For updates and exclusive offers enter your email. Leah is a British journalist with a BA in Journalism, Media, and Communications and nearly a decade of content writing experience. Over the last four years, her focus has primarily been on Web3 technologies, driven by her genuine enthusiasm for decentralization and the latest technological advancements. She has contributed to leading crypto and NFT publications – Cointelegraph, Coinbound, Crypto News, NFT Plazas, Bitcolumnist, Techreport, and NFT Lately – which has elevated her to a senior role in crypto journalism. Whether crafting breaking news or in-depth reviews, she strives to engage her readers with the latest insights and information. Her articles often span the hottest cryptos, exchanges, and evolving regulations. As part of her ploy to attract crypto newbies into Web3, she explains even the most complex topics in an easily understandable and engaging way. Further underscoring her dynamic journalism background, she has written for various sectors, including software testing (TEST Magazine), travel (Travel Off Path), and music (Mixmag). When she’s not deep into a crypto rabbit hole, she’s probably island-hopping (with the Galapagos and Hainan being her go-to’s). Or perhaps sketching chalk pencil drawings while listening to the Pixies, her all-time favorite band. This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Center or Cookie Policy. I Agree Source: https://bitcoinist.com/banco-santander-and-snorter-token-crypto-services/
Share
BitcoinEthereumNews2025/09/17 23:45