El algoritmo WormHole demuestra que el enrutamiento eficiente en grafos grandes puede lograrse con un error mínimo y consultas limitadas. Al mantener un "anillo interno" sublineal que aún contiene el núcleo de Chung-Lu, WormHole garantiza que las rutas de enrutamiento se desvíen como máximo O(log log n) del camino más corto verdadero, incluso en escenarios de peor caso. El documento además limita su complejidad de consulta bajo el modelo de consulta de nodos, demostrando que se pueden obtener resultados de alta precisión con una fracción del costo de exploración.El algoritmo WormHole demuestra que el enrutamiento eficiente en grafos grandes puede lograrse con un error mínimo y consultas limitadas. Al mantener un "anillo interno" sublineal que aún contiene el núcleo de Chung-Lu, WormHole garantiza que las rutas de enrutamiento se desvíen como máximo O(log log n) del camino más corto verdadero, incluso en escenarios de peor caso. El documento además limita su complejidad de consulta bajo el modelo de consulta de nodos, demostrando que se pueden obtener resultados de alta precisión con una fracción del costo de exploración.

Comprendiendo el Error de Aproximación y la Complejidad de Consulta en el Enrutamiento WormHole

2025/10/16 20:00

Abstracto y 1. Introducción

1.1 Nuestra Contribución

1.2 Configuración

1.3 El algoritmo

  1. Trabajo Relacionado

  2. Algoritmo

    3.1 La Fase de Descomposición Estructural

    3.2 La Fase de Enrutamiento

    3.3 Variantes de WormHole

  3. Análisis Teórico

    4.1 Preliminares

    4.2 Sublinealidad del Anillo Interior

    4.3 Error de Aproximación

    4.4 Complejidad de Consulta

  4. Resultados Experimentales

    5.1 WormHole𝐸, WormHole𝐻 y BiBFS

    5.2 Comparación con métodos basados en índices

    5.3 WormHole como primitiva: WormHole𝑀

Referencias

4.3 Error de Aproximación

Ahora que tenemos un anillo interior sublineal que contiene el núcleo de Chung-Lu, debemos demostrar que enrutar caminos a través de él incurre solo en una pequeña penalización. Intuitivamente, cuanto más grande sea el anillo interior, más fácil es satisfacer esto: si el anillo interior es todo el grafo, la afirmación se cumple trivialmente. Por lo tanto, el desafío radica en demostrar que podemos lograr una fuerte garantía en términos de precisión incluso con un anillo interior sublineal. Demostramos que WormHole incurre en un error aditivo de como máximo 𝑂(loglog𝑛) para todos los pares, que es mucho menor que el diámetro Θ(log𝑛).

\

\ El resultado anterior se mantiene con alta probabilidad incluso en el peor de los casos. Es decir, para todos los pares (𝑠,𝑡) de vértices en el grafo, la longitud del camino devuelto por WormHole es como máximo 𝑂(loglog𝑛) mayor que la distancia real entre 𝑠 y 𝑡. Esto implica trivialmente que el error aditivo promedio de WormHole está, con alta probabilidad, limitado por la misma cantidad.

\

\

4.4 Complejidad de Consulta

Recordemos el modelo de consulta de nodos en este artículo (ver §1.2): comenzando desde un solo nodo, se nos permite hacer consultas iterativamente, donde cada consulta recupera la lista de vecinos de un nodo 𝑣 de nuestra elección. Estamos interesados en la complejidad de consulta, es decir, el número de consultas necesarias para realizar ciertas operaciones.

\ \

\ \ El primer resultado es el límite superior de nuestro rendimiento.

\ \

\ \ Esquema de la Prueba. Para una consulta dada SP(𝑢, 𝑣), damos un límite superior en la complejidad de consulta del BFS que comienza en 𝑢, y de manera similar para 𝑣; la complejidad total de consulta es la suma de estas dos cantidades.

\ \

\ \ \

\ \ \

\ \ \

\ \ \

\ \

:::info Autores:

(1) Talya Eden, Universidad Bar-Ilan (talyaa01@gmail.com);

(2) Omri Ben-Eliezer, MIT (omrib@mit.edu);

(3) C. Seshadhri, UC Santa Cruz (sesh@ucsc.edu).

:::


:::info Este artículo está disponible en arxiv bajo licencia CC BY 4.0.

:::

\

Aviso legal: Los artículos republicados en este sitio provienen de plataformas públicas y se ofrecen únicamente con fines informativos. No reflejan necesariamente la opinión de MEXC. Todos los derechos pertenecen a los autores originales. Si consideras que algún contenido infringe derechos de terceros, comunícate a la dirección service@support.mexc.com para solicitar su eliminación. MEXC no garantiza la exactitud, la integridad ni la actualidad del contenido y no se responsabiliza por acciones tomadas en función de la información proporcionada. El contenido no constituye asesoría financiera, legal ni profesional, ni debe interpretarse como recomendación o respaldo por parte de MEXC.

También te puede interesar

Rememoran el testamento lírico de Rossini en el Palacio de Bellas Artes

Rememoran el testamento lírico de Rossini en el Palacio de Bellas Artes

Juan Carlos TalaveraLa Petite messe solennelle (Pequeña misa solemne) de Gioachino Rossini es como la Capilla Sixtina, de Miguel Ángel, una obra de arte absoluta a la que hay que respetar cuando llevamos al escenario, dice a Excélsior Salvatore Caputo, director de coro italiano que viajará a México para interpretar esta obra el 18 de diciembre, a las 20:00 horas, en la Sala Principal del Palacio de Bellas Artes. “Es una gran ópera lírica-sacra que Rossini compuso en 1863 y que fue su última gran obra, con la que quiso despedirse de la música. Además, es una de las misas más exigentes que se puede hacer con coro”, asegura Caputo, actual director de coro de la Ópera Nacional de Burdeos y director invitado del Centro Nacional de las Artes de Pekín. ¿Qué tan demandante es esta obra?, se pregunta a Caputo. “Demanda una gran atención vocal para los artistas y, sobre todo, mucha concentración, porque tiene todo lo que es difícil en el canto coral, como las fugas, que son complicadas, muy virtuosísticas y tiene momentos a capella, como siempre en la música italiana, porque los músicos italianos como Verdi, Donizetti y Rossini, cuando escriben música sacra, tienen el modelo de (Giovanni) Palestrina”. ¿Fue la última obra del compositor? “Fue el testamento de un músico que guardó silencio por muchos años, que terminó de escribir su última ópera Guillermo Tell, en 1829, y guardaría silencio durante los siguientes 30 años. Escribió algunos Stabat Mater, en Bolonia, pero de pronto apareció con esta obra. Todo mundo sabía que Rossini era un gran músico, pero para cuando escribe la Petite messe solennelle ya no se tocaba su música, así que fue un shock en París, porque era como reafirmar que estaba vivo y que era el gran músico que la historia afirmaba”. ¿Qué tan cercana es al público de nuestro tiempo? “Estamos en una época de guerra. No sé en México, pero en Europa los tambores de guerra suenan fuerte y esta misa termina con Dona nobis pacem (danos la paz) y con un aria emotiva con un sentido de tristeza, donde el coro contesta con música a capella diciendo que necesitamos paz y reconciliación, lo cual es bastante actual. “Además, es música muy melódica que le gusta a los jóvenes y es una obra que llega al corazón, porque Rossini es un músico inmortal que logró hacer melodías hace 200 años que aún movilizan nuestra capacidad de escuchar”. Salvatore Caputo dirigirá Petite messe solennelle –estrenada el 14 de marzo de 1864 en la capilla del Hôtel de Madame Louise, condesa de Pillet-Will– con el Coro del Teatro de Bellas Artes, así como las sopranos Sandra Villagra y Diana Mata; las contraltos Tatiana Burgos y Celene Villeda y los tenores Héctor Coyol y Ángel Ruz.   Los cantantes: Participarán en la Petite messe solennelle Sandra Villagra, Diana Mata, Tatiana Burgos, Celene Villeda, Héctor Coyol, Ángel Ruz, César Becerra y Ricardo López.   cva   Contenidos Relacionados: INBAL reconoce a Alejandro Jodorowsky con la Medalla Bellas Artes 2025Giselle regresa al Palacio de Bellas Artes: fechas, boletos y elenco 2025Ovación de un par de minutos: triunfó Nadine Sierra en Bellas Artes
Compartir
Excelsior2025/12/11 14:27