IA2 uses the TD3-TD-SWAR model and DRL to optimize index selection, reducing TPC-H workload runtime by 40% via adaptive action masking.IA2 uses the TD3-TD-SWAR model and DRL to optimize index selection, reducing TPC-H workload runtime by 40% via adaptive action masking.

Reducing TPC-H Workload Runtime by 40% with IA2 Deep Reinforcement Learning

Abstract and 1. Introduction

  1. Related Works

    2.1 Traditional Index Selection Approaches

    2.2 RL-based Index Selection Approaches

  2. Index Selection Problem

  3. Methodology

    4.1 Formulation of the DRL Problem

    4.2 Instance-Aware Deep Reinforcement Learning for Efficient Index Selection

  4. System Framework of IA2

    5.1 Preprocessing Phase

    5.2 RL Training and Application Phase

  5. Experiments

    6.1 Experimental Setting

    6.2 Experimental Results

    6.3 End-to-End Performance Comparison

    6.4 Key Insights

  6. Conclusion and Future Work, and References

Abstract

This study introduces the Instance-Aware Index Advisor (IA2), a novel deep reinforcement learning (DRL)-based approach for optimizing index selection in databases facing large action spaces of potential candidates. IA2 introduces the Twin Delayed Deep Deterministic Policy Gradient - Temporal Difference State-Wise Action Refinery (TD3-TD-SWAR) model, enabling efficient index selection by understanding workload-index dependencies and employing adaptive action masking. This method includes a comprehensive workload model, enhancing its ability to adapt to unseen workloads and ensuring robust performance across diverse database environments. Evaluation on benchmarks such as TPCH reveals IA2’s suggested indexes’ performance in enhancing runtime, securing a 40% reduction in runtime for complex TPC-H workloads compared to scenarios without indexes, and delivering a 20% improvement over existing state-of-theart DRL-based index advisors.

1 Introduction

For more than five decades, the pursuit of optimal index selection has been a key focus in database research, leading to significant advancements in index selection methodologies [8]. However, despite these developments, current strategies frequently struggle to provide both high-quality solutions and efficient selection processes [5].

\ The Index Selection Problem (ISP), detailed in Section 3, involves choosing the best subset of index candidates, considering multi-attribute indexes, from a specific workload, dataset, and under given constraints, such as storage capacity or a maximum number of indexes. This task, aimed at enhancing workload performance, is recognized as NP-hard, highlighting the complexities, especially when dealing with multi-attribute indexes, in achieving optimal index configurations [7].

\ Reinforcement Learning (RL) offers a promising solution for navigating the complex decision spaces involved in index selection [6, 7, 10]. Yet, the broad spectrum of index options and the complexity of workload structures complicate the process, leading to prolonged training periods and challenges in achieving optimal configurations. This situation highlights the critical need for advanced solutions adept at efficiently managing the complexities of multi-attribute index selection [6]. Figure 1 illustrates the difficulties encountered with RL in index selection, stemming from the combinatorial complexity and vast action spaces. Our approach improves DRL agent efficiency via adaptive action selection, significantly refining the learning process. This enables rapid identification of advantageous indexes across varied database schemas and workloads, thereby addressing the intricate challenges of database optimization more effectively.

\ Our contributions are threefold: (i) modeling index selection as a reinforcement learning problem, characterized by a thorough system designed to support comprehensive workload representation and implement state-wise action pruning methods, distinguishing our approach from existing literature. (ii) employing TD3-TD-SWAR for efficient training and adaptive action space navigation; (iii) outperforming stateof-the-art methods in selecting optimal index configurations for diverse and even unseen workloads. Evaluated on the TPC-H Benchmark, IA2 demonstrates significant training efficiency, runtime improvements, and adaptability, marking a significant advancement in database optimization for diverse workloads.

\ Figure 1. Unique challenges to RL-based Index Advisors due to diverse and complex workloads

\

:::info This paper is available on arxiv under CC BY-NC-SA 4.0 Deed (Attribution-Noncommercial-Sharelike 4.0 International) license.

:::

\

Market Opportunity
Humanity Logo
Humanity Price(H)
$0.15724
$0.15724$0.15724
+3.04%
USD
Humanity (H) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

From random auctions to forward contracts, how does ETHGas transform block space into a priced resource?

From random auctions to forward contracts, how does ETHGas transform block space into a priced resource?

Key points: ETHGas redefines Ethereum block space as a priced resource, moving beyond transaction fees that fluctuate with demand. Through block space futures and
Share
PANews2025/12/26 14:00
Headwind Helps Best Wallet Token

Headwind Helps Best Wallet Token

The post Headwind Helps Best Wallet Token appeared on BitcoinEthereumNews.com. Google has announced the launch of a new open-source protocol called Agent Payments Protocol (AP2) in partnership with Coinbase, the Ethereum Foundation, and 60 other organizations. This allows AI agents to make payments on behalf of users using various methods such as real-time bank transfers, credit and debit cards, and, most importantly, stablecoins. Let’s explore in detail what this could mean for the broader cryptocurrency markets, and also highlight a presale crypto (Best Wallet Token) that could explode as a result of this development. Google’s Push for Stablecoins Agent Payments Protocol (AP2) uses digital contracts known as ‘Intent Mandates’ and ‘Verifiable Credentials’ to ensure that AI agents undertake only those payments authorized by the user. Mandates, by the way, are cryptographically signed, tamper-proof digital contracts that act as verifiable proof of a user’s instruction. For example, let’s say you instruct an AI agent to never spend more than $200 in a single transaction. This instruction is written into an Intent Mandate, which serves as a digital contract. Now, whenever the AI agent tries to make a payment, it must present this mandate as proof of authorization, which will then be verified via the AP2 protocol. Alongside this, Google has also launched the A2A x402 extension to accelerate support for the Web3 ecosystem. This production-ready solution enables agent-based crypto payments and will help reshape the growth of cryptocurrency integration within the AP2 protocol. Google’s inclusion of stablecoins in AP2 is a massive vote of confidence in dollar-pegged cryptocurrencies and a huge step toward making them a mainstream payment option. This widens stablecoin usage beyond trading and speculation, positioning them at the center of the consumption economy. The recent enactment of the GENIUS Act in the U.S. gives stablecoins more structure and legal support. Imagine paying for things like data crawls, per-task…
Share
BitcoinEthereumNews2025/09/18 01:27
zkPass Listing: Upbit’s Strategic Move to Boost Privacy-Focused Crypto Adoption

zkPass Listing: Upbit’s Strategic Move to Boost Privacy-Focused Crypto Adoption

BitcoinWorld zkPass Listing: Upbit’s Strategic Move to Boost Privacy-Focused Crypto Adoption In a significant move for the privacy-focused cryptocurrency sector
Share
bitcoinworld2025/12/26 14:45