By enriching prototype features, the method resists neural collapse and transfers across domains with up to 22% relative gains.By enriching prototype features, the method resists neural collapse and transfers across domains with up to 22% relative gains.

Boost Few-Shot Instance Accuracy 12% Without Fine-Tuning

:::info Authors:

(1) Umberto Michieli, Samsung Research UK;

(2) Jijoong Moon, Samsung Research Korea;

(3) Daehyun Kim, Samsung Research Korea;

(4) Mete Ozay, Samsung Research UK.

:::

Abstract and 1. Introduction

  1. Few-Shot Personalized Instance Recognition
  2. Object-Conditioned Bag of Instances
  3. Experimental Results
  4. Conclusion
  5. References

ABSTRACT

Nowadays, users demand for increased personalization of vision systems to localize and identify personal instances of objects (e.g., my dog rather than dog) from a few-shot dataset only. Despite outstanding results of deep networks on classical label-abundant benchmarks (e.g., those of the latest YOLOv8 model for standard object detection), they struggle to maintain within-class variability to represent different instances rather than object categories only. We construct an Object-conditioned Bag of Instances (OBoI) based on multiorder statistics of extracted features, where generic object detection models are extended to search and identify personal instances from the OBoI’s metric space, without need for backpropagation. By relying on multi-order statistics, OBoI achieves consistent superior accuracy in distinguishing different instances. In the results, we achieve 77.1% personal object recognition accuracy in case of 18 personal instances, showing about 12% relative gain over the state of the art.

\

1. INTRODUCTION

Smart devices are starting to be ubiquitous in everyday life [1] and their users are demanding for instance-level personalized detection of vision systems mounted on such devices [2, 3]. For example, vacuum cleaners can now monitor the behavior of users’ specific pets, and stay away from those specific pets that are mostly scared by the robot’s noise [4]. Nonetheless, users do not provide many labeled examples, being a time-consuming operation. Therefore, we introduce a new task of few-shot instance-level personalization of object detection models to detect and recognize personal instances of objects (e.g., dog1 and dog2 rather than just dog). The limited availability of the data distinguishes our task from previous instance-level personalization attempts [5, 6]. To the best of our knowledge, previous works assume large availability of labelled data and finetune (FT) the models through computationally expensive updates. However, FT-based methods inevitably fail when few-shot samples are provided [7, 8, 9, 10].

\ In our work, we utilize the latest YOLOv8 [11] efficient detection model, and we enable personalized instance recognition via backpropagation-free Prototypes-based Few-Shot Learners (PFSLs), such as [12, 13]. In short, PFSLs learn a metric space in which classification is performed by computing distances to prototypical representations of each class.

\ In this context, we extend PFSLs to support object-class conditioned search, and we call these approaches Object-conditioned Bag of Instances (OBoI), since they contain instance-level prototypes. Our approach enriches any OBoI method by augmenting localized encoder embeddings (EEs) of the input object via multi-order statistics to construct a richer metric space, where instance-specific patterns are separable. We compute augmented EEs (AEEs) via a reduction module similar to recent pooling schemes [14, 15, 16, 17] to characterize the distribution of the specific instances from the few-shot labelled data. A concurrent work [14] applies ensemble learning on multi-order features learned separately; however, their focus is neither personalized instance recognition nor object detection, and they require gradient-based training. A backpropagation-free approach, instead, could be especially useful where dynamic compilers are not available for the target hardware. Our OBoIs with AEEs significantly increase model personalization, alleviating neural collapse [18, 19], i.e., a state at which within-class variability of hidden layer outputs is completely lost due to the object-level optimization objective. Our main novelties are:

\

  1. We propose a novel task of few-shot personalization of object detectors to recognize instances of objects;

    \

  2. We extend PFSLs via object-level conditioning (OBoIs);

    \

  3. We further design a multi-order feature space where personal instances can be separated via a backpropagationfree metric learning on few-shot labelled user data only;

    \

  4. OBoIs provide superior results on both same and other domain data (11-22% and 7-18% relative gains respectively).

\

:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
Boost Logo
Boost Price(BOOST)
$0.001572
$0.001572$0.001572
-1.31%
USD
Boost (BOOST) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip

Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip

The post Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip appeared on BitcoinEthereumNews.com. Gold is strutting its way into record territory, smashing through $3,700 an ounce Wednesday morning, as Sprott Asset Management strategist Paul Wong says the yellow metal may finally snatch the dollar’s most coveted role: store of value. Wong Warns: Fiscal Dominance Puts U.S. Dollar on Notice, Gold on Top Gold prices eased slightly to $3,678.9 […] Source: https://news.bitcoin.com/gold-hits-3700-as-sprotts-wong-says-dollars-store-of-value-crown-may-slip/
Share
BitcoinEthereumNews2025/09/18 00:33
Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC

Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC

The post Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC appeared on BitcoinEthereumNews.com. Franklin Templeton CEO Jenny Johnson has weighed in on whether the Federal Reserve should make a 25 basis points (bps) Fed rate cut or 50 bps cut. This comes ahead of the Fed decision today at today’s FOMC meeting, with the market pricing in a 25 bps cut. Bitcoin and the broader crypto market are currently trading flat ahead of the rate cut decision. Franklin Templeton CEO Weighs In On Potential FOMC Decision In a CNBC interview, Jenny Johnson said that she expects the Fed to make a 25 bps cut today instead of a 50 bps cut. She acknowledged the jobs data, which suggested that the labor market is weakening. However, she noted that this data is backward-looking, indicating that it doesn’t show the current state of the economy. She alluded to the wage growth, which she remarked is an indication of a robust labor market. She added that retail sales are up and that consumers are still spending, despite inflation being sticky at 3%, which makes a case for why the FOMC should opt against a 50-basis-point Fed rate cut. In line with this, the Franklin Templeton CEO said that she would go with a 25 bps rate cut if she were Jerome Powell. She remarked that the Fed still has the October and December FOMC meetings to make further cuts if the incoming data warrants it. Johnson also asserted that the data show a robust economy. However, she noted that there can’t be an argument for no Fed rate cut since Powell already signaled at Jackson Hole that they were likely to lower interest rates at this meeting due to concerns over a weakening labor market. Notably, her comment comes as experts argue for both sides on why the Fed should make a 25 bps cut or…
Share
BitcoinEthereumNews2025/09/18 00:36
[Tambay] Tres niños na bagitos

[Tambay] Tres niños na bagitos

Mga bagong lublób sa malupit na mundo ng Philippine politics ang mga newbies na sina Leviste, Barzaga, at San Fernando, kaya madalas nakakangilo ang kanilang ikinikilos
Share
Rappler2026/01/18 10:00