"Prompt engineering" is becoming less about finding the right words and phrases for your prompts, and more about answering the broader question of "what configuration of context is most likely to generate our model’s desired behavior?""Prompt engineering" is becoming less about finding the right words and phrases for your prompts, and more about answering the broader question of "what configuration of context is most likely to generate our model’s desired behavior?"

Beyond the Prompt: Five Lessons from Anthropic on AI's Most Valuable Resource

The Hidden Challenge Beyond the Prompt

For the past few years, "prompt engineering" has dominated the conversation in applied AI. The focus has been on mastering the art of instruction; finding the perfect words and structure to elicit a desired response from a language model. But as developers move from simple, one-shot tasks to building complex, multi-step AI "agents," a more fundamental challenge has emerged: context engineering.

This shift marks a new phase in building with AI, moving beyond the initial command to managing the entire universe of information an AI sees at any given moment. As experts at Anthropic have framed it:

"Building with language models is becoming less about finding the right words and phrases for your prompts, and more about answering the broader question of 'what configuration of context is most likely to generate our model’s desired behavior?'"

Mastering this new art is critical for creating capable, reliable agents. This article reveals five of the most impactful and counter-intuitive lessons from Anthropic on how to engineer context effectively.

Takeaway 1: The Era of "Prompt Engineering" Is Evolving

Context engineering is the natural and necessary evolution of prompt engineering. As AI applications grow in complexity, the initial prompt is just one piece of a much larger puzzle.

The two concepts can be clearly distinguished:

\

  • Prompt Engineering: Focuses on writing and organizing the initial set of instructions for a Large Language Model (LLM) to achieve an optimal outcome in a discrete task.
  • Context Engineering: A broader, iterative process of curating the entire set of information an LLM has access to at any point during its operation. This includes the system prompt, available tools, external data, message history, and other elements like the Model Context Protocol (MCP).

\ Article content

Takeaway 2: More Context Can Actually Make an AI Dumber

Simply expanding an LLM's context window is not a perfect solution for building smarter agents. In fact, more context can sometimes degrade performance. This counter-intuitive phenomenon is known as "context rot."

This happens because LLMs, like humans with their limited working memory, operate with an "attention budget." This scarcity stems from the underlying transformer architecture, which creates a natural tension between the size of the context and the model's ability to maintain focus. This architecture allows every token to attend to every other, resulting in n² pairwise relationships. As context size increases, this ability gets stretched thin, and models often trained on shorter sequences show reduced precision in long-range reasoning.

This reality forces a critical shift in perspective: context is not an infinite resource to be filled but a precious, finite one that requires deliberate and careful curation.

Takeaway 3: The Golden Rule is "Less is More"

The guiding principle of effective context engineering is to find the minimum effective dose of information. This principle is best summarized as follows:

This "less is more" philosophy applies across all components of an agent's context:

\

  • System Prompts: Prompts must find the "Goldilocks zone" or "right altitude." This "right altitude" avoids two common failure modes: at one extreme, "brittle if-else hardcoded prompts" that lack flexibility, and at the other, prompts that are "overly general or falsely assume shared context."
  • Tools: Avoid bloated tool sets with overlapping functionality. The source offers a powerful heuristic: "If a human engineer can’t definitively say which tool should be used in a given situation, an AI agent can’t be expected to do better." Curating a minimal, unambiguous set of tools is therefore paramount.
  • Examples: Instead of a "laundry list of edge cases," it is far more effective to provide a few "diverse, canonical examples" that clearly demonstrate the agent's expected behavior.

\

Takeaway 4: The Smartest Agents Mimic Human Memory, Not Supercomputers

Instead of trying to load all possible information into an agent's context window, the most effective approach is to retrieve it "just in time." This strategy involves building agents that can dynamically load data as needed, rather than having everything pre-loaded.

This method draws a direct parallel to human cognition. We don't memorize entire libraries; we use organizational systems like bookmarks, file systems, and notes to retrieve relevant information on demand. AI agents can be designed to do the same.

This strategy enables what the source calls "progressive disclosure." Agents incrementally discover relevant context through exploration, assembling understanding layer by layer. Each interaction including reading a file name, checking a timestamp provides signals that inform the next decision, allowing the agent to maintain focus on what's necessary without drowning in irrelevant information.

Two powerful examples illustrate this concept:

\

  1. Structured Note-Taking: An agent can maintain an external file, like NOTES.md or a to-do list, to track progress, dependencies, and key decisions on complex tasks. This persists memory outside the main context, which can be referenced as needed.
  2. The Pokémon Agent: An agent designed to play Pokémon used its own notes to track progress over thousands of steps. It remembered combat strategies, mapped explored regions, and tracked training goals coherently over many hours—a feat impossible if it had to keep every detail in its active context window.

\

Takeaway 5: Complex Problems Require an AI "Team"

For large, long-horizon tasks that exceed any single context window, a sub-agent architecture is a highly effective strategy. This model mirrors the structure of an effective human team.

The architecture works by having a main agent act as a coordinator or manager. This primary agent delegates focused tasks to specialized sub-agents, each with its own clean context window. The sub-agents perform deep work, such as technical analysis or information gathering, and may use tens of thousands of tokens in the process.

The key benefit is that each sub-agent returns only a "condensed, distilled summary" of its findings to the main agent. This keeps the primary agent's context clean, uncluttered, and focused on high-level strategy and synthesis. This sophisticated method for managing an AI's attention allows teams of agents to tackle problems of a scale and complexity that a single agent cannot.

Conclusion: Curating Attention is the Future

The art of building effective AI agents is undergoing a fundamental shift; from a discipline of simple instruction to one of sophisticated information and attention management. The core challenge is no longer just crafting the perfect prompt but thoughtfully curating what enters a model's limited attention budget at each step.

Even as models advance toward greater autonomy, the core principles of attention management and context curation will separate brittle, inefficient agents from resilient, high-performing ones. This is not just a technical best practice; it is the strategic foundation for the next generation of AI systems.

Market Opportunity
Prompt Logo
Prompt Price(PROMPT)
$0,05146
$0,05146$0,05146
+1,49%
USD
Prompt (PROMPT) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment

The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment

BitcoinWorld The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment Have you ever noticed that when everyone on social media is screaming
Share
bitcoinworld2025/12/20 07:45
Record instroom Bitcoin-ETF’s – richting $120.000?

Record instroom Bitcoin-ETF’s – richting $120.000?

Connect met Like-minded Crypto Enthusiasts! Connect op Discord! Check onze Discord   De markt voor Bitcoin ETF’s laat wederom een opvallende trend zien. De afgelopen week werd de grootste instroom sinds juli geregistreerd, een ontwikkeling die de aandacht van zowel institutionele als particuliere beleggers trekt. Deze instroom zorgt voor nieuwe speculatie over de vraag of Bitcoin binnenkort de grens van 120.000 dollar kan doorbreken. Laten we dit hieronder nader bekijken. Grootste instroom sinds juli Volgens recente marktgegevens wist de Amerikaanse spot Bitcoin ETF’s een instroom te krijgen ver boven de gemiddelde niveaus van de afgelopen weken. Alleen al op 16 september werd meer dan 290 miljoen dollar netto in deze fondsen gestort. Daarmee markeert dit de zevende opeenvolgende dag met positieve instroom, een duidelijk teken dat institutionele belangstelling opnieuw toeneemt. De grootste bijdrage kwam van BlackRock’s iShares Bitcoin Trust, dat meer dan 200 miljoen dollar stortte. Ook de ETF’s van Fidelity en Ark lieten grote instroom zien. Kortom, de instroom blijft positief. U.S. spot Bitcoin ETFs Ignite with a $553M daily inflow, pushing a four-day streak to $1.7B. Ether ETFs also saw a resurgence with $113M in new funds. #Bitcoin #ETF #ETHhttps://t.co/zZiNqtKSEm — Cryptonews.com (@cryptonews) September 12, 2025 Hoe instroom prijsondersteuning biedt De sterke instroom in Bitcoin ETF’s is meer dan een mijlpaal. Het laat zien hoe de vraag naar Bitcoin groeit vanuit institutionele hoek en dat deze vraag niet voor een keer is, maar structureel is. Omdat de instroom de hoeveelheid nieuw geminde Bitcoin overtreft, ontstaat er een overschot qua vraag dat de prijs positief kan beïnvloeden. Dit verschil tussen aanbod en vraag zorgt ervoor dat het dalende risico wordt beperkt. Wanneer institutionele beleggers via ETF’s posities opbouwen, gebeurt dit bovendien vaak met een langere beleggingshorizon. Dat geeft de markt extra stabiliteit, zeker in een periode waarin onzekerheden rondom rente en macro-economie nog altijd spelen. Signaalfunctie voor beleggers Voor beleggers in de crypto markt hebben deze cijfers een signaalfunctie. Het vertrouwen dat grote institutionele spelers door miljarden te alloceren in gereguleerde beleggingsproducten bevestigt dat Bitcoin steeds meer gekocht wordt in de traditionele financiële wereld. Dit momentum werkt vaak door naar de bredere markt, omdat particuliere beleggers dit zien als bevestiging dat de trend omhoog sterker wordt. Ook technische analyse wijst op een belangrijke fase. De koers van Bitcoin beweegt rond de 118.000 dollar, een weerstandsniveau dat al meerdere keren is getest. Het momentum dat voortkomt uit de ETF instroom kan de kracht geven om dit niveau te doorbreken en een nieuwe fase van prijsstijging richting 120.000 dollar in te luiden. Op korte termijn richting de $120.000? Hoewel niemand met zekerheid kan voorspellen of Bitcoin dit niveau direct zal bereiken, biedt de huidige context sterke aanwijzingen dat de kans aanwezig is. De combinatie van record instroom, institutioneel vertrouwen en een gunstig technisch analyse vormt een krachtige mix. Beleggers doen er goed aan om rekening te houden met de invloed van externe factoren zoals beleidsbesluiten van de Federal Reserve. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek.   Het bericht Record instroom Bitcoin-ETF’s – richting $120.000? is geschreven door Timo Bruinsel en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/09/18 01:31
Q2 Market Insights: Bitcoin regains dominance in risk-averse environment, ETFs remain critical to market structure

Q2 Market Insights: Bitcoin regains dominance in risk-averse environment, ETFs remain critical to market structure

The market will show a downward trend in the short term, and then rebound and set new highs in the second half of the year.
Share
PANews2025/04/28 19:40