The post Ray Enhances Scheduling with New Label Selectors appeared on BitcoinEthereumNews.com. Terrill Dicki Nov 01, 2025 13:41 Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine. Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale. Enhancing Workload Placement The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes. Addressing Previous Limitations Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b. Integration with Kubernetes Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics. Practical Applications With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static… The post Ray Enhances Scheduling with New Label Selectors appeared on BitcoinEthereumNews.com. Terrill Dicki Nov 01, 2025 13:41 Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine. Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale. Enhancing Workload Placement The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes. Addressing Previous Limitations Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b. Integration with Kubernetes Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics. Practical Applications With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static…

Ray Enhances Scheduling with New Label Selectors

2025/11/02 10:24


Terrill Dicki
Nov 01, 2025 13:41

Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine.

Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale.

Enhancing Workload Placement

The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes.

Addressing Previous Limitations

Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b.

Integration with Kubernetes

Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics.

Practical Applications

With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static and autoscaling clusters, with Anyscale’s autoscaler considering resource shapes and label selectors to scale worker groups appropriately.

Future Developments

Looking ahead, Ray plans to enhance the label selector feature with additional capabilities such as fallback label selectors, library support for common scheduling patterns, and improved interoperability with Kubernetes. These developments aim to further simplify workload scheduling and enhance the overall user experience.

For more detailed instructions and API details, developers can refer to the Anyscale and Ray guides.

Image source: Shutterstock

Source: https://blockchain.news/news/ray-enhances-scheduling-with-new-label-selectors

Market Opportunity
Raydium Logo
Raydium Price(RAY)
$0.9487
$0.9487$0.9487
-2.72%
USD
Raydium (RAY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Share
BitcoinEthereumNews2025/09/18 00:09
XRP Price Prediction: Can Ripple Rally Past $2 Before the End of 2025?

XRP Price Prediction: Can Ripple Rally Past $2 Before the End of 2025?

The post XRP Price Prediction: Can Ripple Rally Past $2 Before the End of 2025? appeared first on Coinpedia Fintech News The XRP price has come under enormous pressure
Share
CoinPedia2025/12/16 19:22
BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44