The energy usage of datacentres, particularly for AI applications, has been covered extensively – and for good reason. AI consumes more power and runs hotter thanThe energy usage of datacentres, particularly for AI applications, has been covered extensively – and for good reason. AI consumes more power and runs hotter than

Pipe flow to datalakes: How AI can streamline its water and energy usage

The energy usage of datacentres, particularly for AI applications, has been covered extensively – and for good reason. AI consumes more power and runs hotter than standard computing loads. In 2022, the IEA reported that the total power used by datacentres, including for AI and cryptocurrency, was around 460TWh.  

Although estimates see this power usage potentially grow to 945TWh by 2030, electric vehicles are predicted to consume around 780TWh by 2030, to put this in context. When we look at AI specifically, Schneider Electric has estimated that AI’s share of this power consumption is currently around 8% and may grow to 15-20% by 2028.  

These estimates are still prone to be too high. Koomey’s Law tells us that over time, we see greater efficiencies in computing – or specifically, that the number of calculations per unit of energy increase over time. For example, between 2010 and 2018, the amount of computing being done in datacentres increased by over 500%, but the amount of energy being used only increased by 6%.  

However, although the amount of energy used by AI is considerable, it can also return the favour.  

AI: Water and Chips with that?  

AI’s contribution to human endeavor is already significant. Perhaps the most high-profile example is AlphaFold, which helps us predict protein structures, improving drug discovery and our understanding of diseases.  

But we’ve seen many other applications, including improving chili yields in India, reducing conflict between humans and snow leopards, or supporting better risk modelling for insurance companies.  

AI lives in the cloud, so the most logical place to use AI to reduce water usage is the datacentre. Datacentres have historically been cooled with air conditioning. With AI’s workloads, cloud companies are rapidly realizing that air is insufficient, and the future will revolve around using liquid cooling.  

The reason for this is simple: the thermal conductivity of water is about 23 times better than air, and when you consider additional factors like flow rate, water’s volumetric heat capacity is over 3000 times better than air when used in an industrial setting.  

On this basis alone, it’s a no-brainer to use water to cool technology infrastructure. Better conductivity means more power efficiency, and ultimately, less power used to remove more heat.  

And we’re still seeing innovation in this field. Historically, cloud companies and gamers alike have attached plates to CPUs (and often, GPUs) and used water to remove the heat. This is known as direct liquid to chip cooling.  

We are now starting to see immersive cooling techniques emerge, where the entire server is immersed in fluid. Although this has a number of implications for unit maintenance, servers immersed in fluid are not only more power-efficient, but it also eliminates dust from units, improving component lifespans.  

So how do we use AI to further improve this efficiency?  

Air, water and changing priorities 

AI’s core strength lies in pattern recognition, analysing complex data sets and finding links. Most servers have the ability to measure their own workloads and temperatures, and this data can be fed back to data lakes where AI systems can learn how to optimise cooling and power requirements.  

However, sensors can also be put on the servers themselves, measuring water flow and consequently obtaining more information about a server’s temperature and cooling requirements.  

It’s important to remember that cloud servers don’t exist in isolation. Local weather affects cooling: many datacentres use ‘free air cooling’ and use ambient temperature to cool the servers – this is more effective in Iceland than in Florida, for example. At the same time, most datacentres use dry coolers outside to do evaporative cooling – but this is less effective in areas of high humidity.  

Balancing these equations is where AI excels. AI can analyse not only the temperature and power consumption of the servers, but also the environment around them, including data from weather stations. This helps to react to local conditions, but also to predict them and streamline water usage now and in the future.  

Conversely, the datacentre may not be in an area of water scarcity, in which case, AI can be tailored to optimise the server performance or the power usage of the pumps and other equipment. Datacentres in urban areas may prioritise noise reduction to avoid disturbing local residents – which AI can also help with, optimising systems to decrease volume from mechanical operations.  

Self-optimising technologies 

The technology industry is always moving forwards, and although the AI industry has seen a considerable amount of backlash, it also has considerable potential to improve our lives and the world around us. However, we should always have sustainability in mind, considering how to provide for today’s needs while still safeguarding the world of tomorrow.  

This does require a complex conjunction of worlds: AI needs data to operate, which means using a combination of IoT and industrial expertise alongside data analysis techniques. But with the right skills, vision and commitment, we can not only benefit from AI directly, but also use it to streamline its own resource consumption, driving a self-improving virtuous circle.  

Market Opportunity
Pipe Network Logo
Pipe Network Price(PIPE)
$0.06448
$0.06448$0.06448
-0.84%
USD
Pipe Network (PIPE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

MFS Releases Closed-End Fund Income Distribution Sources for Certain Funds

MFS Releases Closed-End Fund Income Distribution Sources for Certain Funds

BOSTON–(BUSINESS WIRE)–MFS Investment Management® (MFS®) released today the distribution income sources for five of its closed-end funds for December 2025: MFS®
Share
AI Journal2025/12/23 05:45
BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44
Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

The post Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued appeared on BitcoinEthereumNews.com. American-based rock band Foreigner performs onstage at the Rosemont Horizon, Rosemont, Illinois, November 8, 1981. Pictured are, from left, Mick Jones, on guitar, and vocalist Lou Gramm. (Photo by Paul Natkin/Getty Images) Getty Images Singer Lou Gramm has a vivid memory of recording the ballad “Waiting for a Girl Like You” at New York City’s Electric Lady Studio for his band Foreigner more than 40 years ago. Gramm was adding his vocals for the track in the control room on the other side of the glass when he noticed a beautiful woman walking through the door. “She sits on the sofa in front of the board,” he says. “She looked at me while I was singing. And every now and then, she had a little smile on her face. I’m not sure what that was, but it was driving me crazy. “And at the end of the song, when I’m singing the ad-libs and stuff like that, she gets up,” he continues. “She gives me a little smile and walks out of the room. And when the song ended, I would look up every now and then to see where Mick [Jones] and Mutt [Lange] were, and they were pushing buttons and turning knobs. They were not aware that she was even in the room. So when the song ended, I said, ‘Guys, who was that woman who walked in? She was beautiful.’ And they looked at each other, and they went, ‘What are you talking about? We didn’t see anything.’ But you know what? I think they put her up to it. Doesn’t that sound more like them?” “Waiting for a Girl Like You” became a massive hit in 1981 for Foreigner off their album 4, which peaked at number one on the Billboard chart for 10 weeks and…
Share
BitcoinEthereumNews2025/09/18 01:26