The DeRO system leverages measurement from both radar (distance of the targets) and tilt angles calculated from accelerometers. The detailed step-by-step practical implementation of the DeRO is outlined in Algorithm 1.The DeRO system leverages measurement from both radar (distance of the targets) and tilt angles calculated from accelerometers. The detailed step-by-step practical implementation of the DeRO is outlined in Algorithm 1.

NASA and Autonomous Cars Love This Algorithm

Abstract and I. Introduction

II. Related Works

III. Dead Reckoning using Radar Odometry

IV. Stochastic Cloning Indirect Extended Kalman Filter

V. Experiments

VI. Conclusion and References

\

IV. STOCHASTIC CLONING INDIRECT EXTENDED KALMAN FILTER

A. State Augmentation

\

\

\ B. System Model

\ We now define the mathematical model of the gyroscope and radar sensors a

\

\

\

\

\

\ The augmented transition matrix is then given by

\

\ As a result, the error covariance of the augmented system is propagated as [28]

\

\ C. Measurement Model

\ Model The DeRO system leverages measurement from both radar (distance of the targets) and tilt angles calculated from accelerometers. We shall describe each measurement model in detail

\

\ D cases. Unlike in [29], where each target’s distance measurement is directly used, we employ the entire scan for matching to determine the distance between frames. This strategy leads to a significant reduction in computation

\

\ According to the relationship between Euler angles and misalignment angles [21], we establish the following linearized measurement model to update the DR estimation

\

\ D. Implementation

\ on The detailed step-by-step practical implementation of the DeRO is outlined in Algorithm 1. In our approach, the procedure for each sensor is executed as soon as the corresponding sensor’s data becomes available.

\

:::info Authors:

(1) Hoang Viet Do, Intelligent Navigation and Control Systems Laboratory (iNCSL), School of Intelligent Mechatronics Engineering, and the Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic Of Korea (hoangvietdo@sju.ac.kr);

(2) Yong Hun Kim, Intelligent Navigation and Control Systems Laboratory (iNCSL), School of Intelligent Mechatronics Engineering, and the Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic Of Korea (yhkim@sju.ac.kr);

(3) Joo Han Lee, Intelligent Navigation and Control Systems Laboratory (iNCSL), School of Intelligent Mechatronics Engineering, and the Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic Of Korea (dlwngks12@sju.ac.kr);

(4) Min Ho Lee, Intelligent Navigation and Control Systems Laboratory (iNCSL), School of Intelligent Mechatronics Engineering, and the Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic Of Korea (mhleee@sju.ac.k)r;

(5) Jin Woo Song, Intelligent Navigation and Control Systems Laboratory (iNCSL), School of Intelligent Mechatronics Engineering, and the Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic Of Korea (jwsong@sejong.ac.kr).

:::


:::info This paper is available on arxiv under ATTRIBUTION-NONCOMMERCIAL-NODERIVS 4.0 INTERNATIONAL license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Over $145M Evaporates In Brutal Long Squeeze

Over $145M Evaporates In Brutal Long Squeeze

The post Over $145M Evaporates In Brutal Long Squeeze appeared on BitcoinEthereumNews.com. Crypto Futures Liquidations: Over $145M Evaporates In Brutal Long Squeeze
Share
BitcoinEthereumNews2026/01/16 11:35
DOGE ETF Hype Fades as Whales Sell and Traders Await Decline

DOGE ETF Hype Fades as Whales Sell and Traders Await Decline

The post DOGE ETF Hype Fades as Whales Sell and Traders Await Decline appeared on BitcoinEthereumNews.com. Leading meme coin Dogecoin (DOGE) has struggled to gain momentum despite excitement surrounding the anticipated launch of a US-listed Dogecoin ETF this week. On-chain data reveals a decline in whale participation and a general uptick in coin selloffs across exchanges, hinting at the possibility of a deeper price pullback in the coming days. Sponsored Sponsored DOGE Faces Decline as Whales Hold Back, Traders Sell The market is anticipating the launch of Rex-Osprey’s Dogecoin ETF (DOJE) tomorrow, which is expected to give traditional investors direct exposure to Dogecoin’s price movements.  However, DOGE’s price performance has remained muted ahead of the milestone, signaling a lack of enthusiasm from traders. According to on-chain analytics platform Nansen, whale accumulation has slowed notably over the past week. Large investors, with wallets containing DOGE coins worth more than $1 million, appear unconvinced by the ETF narrative and have reduced their holdings by over 4% in the past week.  For token TA and market updates: Want more token insights like this? Sign up for Editor Harsh Notariya’s Daily Crypto Newsletter here. Dogecoin Whale Activity. Source: Nansen When large holders reduce their accumulation, it signals a bearish shift in market sentiment. This reduced DOGE demand from significant players can lead to decreased buying pressure, potentially resulting in price stagnation or declines in the near term. Sponsored Sponsored Furthermore, DOGE’s exchange reserve has risen steadily in the past week, suggesting that more traders are transferring DOGE to exchanges with the intent to sell. As of this writing, the altcoin’s exchange balance sits at 28 billion DOGE, climbing by 12% in the past seven days. DOGE Balance on Exchanges. Source: Glassnode A rising exchange balance indicates that holders are moving their assets to trading platforms to sell rather than to hold. This influx of coins onto exchanges increases the available supply in…
Share
BitcoinEthereumNews2025/09/18 05:07
Uniswap launches on OKX’s X Layer with zero interface fees

Uniswap launches on OKX’s X Layer with zero interface fees

The post Uniswap launches on OKX’s X Layer with zero interface fees appeared on BitcoinEthereumNews.com. Uniswap has launched on OKX’s X Layer, enabling zero-fee
Share
BitcoinEthereumNews2026/01/16 11:41