Large language models (LLMs) have played a pivotal role in the significant growth witnessed by GenAI. But LLMs come with a number of built-in issues that act as a damper on the universal adoption of the technology. This is where the move to SLMs or small language models makes eminent sense. These need to conform to a much smaller number of parameters than in the case of LLMs. They are able to run admirably on devices with lesser processing power.Large language models (LLMs) have played a pivotal role in the significant growth witnessed by GenAI. But LLMs come with a number of built-in issues that act as a damper on the universal adoption of the technology. This is where the move to SLMs or small language models makes eminent sense. These need to conform to a much smaller number of parameters than in the case of LLMs. They are able to run admirably on devices with lesser processing power.

Generative AI: Is It Moving From Large Language Models to Small Languge Models?

2025/09/14 01:00

While LLMs, or large language models, have played a pivotal role in the significant growth witnessed by GenAI, they do come with a number of built-in issues that act as a damper on the universal adoption of the technology. For one, the fact that LLM necessitates the training of models that need to take billions and billions of parameters into account, which is something that requires an enormous amount of investment.

\ This ensures that only the largest technology companies with untold resources can seriously look at adopting this technology. Besides, the sheer consumption of energy to run the servers can prove to be an environmental nightmare.

\ This is where the move to SLMs or small language models makes eminent sense. As these need to conform to a much smaller number of parameters than in the case of LLMs, they are able to run admirably on devices with lesser processing power, including browsers, edge & IoT devices, and smartphones. What’s more, the quantum of resources needed to be deployed for this is way lower.

\ SLM technology is more decentralized in that it can be customized to handle precise tasks as well as datasets. This exposure to much more diverse datasets often makes them much more efficient than large language models trained on a limited amount of data.

\ As smaller language models do not have large hardware requirements, these are usually much cheaper to deploy, encouraging more and more organizations and individuals to leverage their power. Another great advantage of using SLMs is the fact that one no longer needs to share one’s sensitive information with external servers, helping you to have enhanced digital security. As you can never really fully comprehend the decision-making process with regard to LLMs, there is an ever-present trust deficit that does not bode well for the implementation of that model in a manner that aligns with your objectives.

\ The widespread adoption of SLM that we see on a daily basis includes things like smart mail suggestions, grammar and spelling checks, voice assistants, real-time text translations, search engine auto fills, and so on. This is a testament to the increased use of SLMs in preference to the conventional LLMs by more and more businesses and enterprises, especially by those who put a premium on cost, better control over technology, and the security of sensitive information.

Summary

Though both LLMs and SLMs have played a critical role in mainstreaming GenAI, the growing popularity of the latter is something that has been quite discernible for some time now. To summarize, SLMs are growing in popularity on account of the fact that LLMs require the deployment of large amounts of resources, which require a substantial investment. Apart from that, SLMs lend themselves to customization more easily, making them a more efficient alternative to LLMs.

\ To top it all, SLMs offer better security. SLMs are increasingly taking over from LLMs across small businesses and enterprises, and this trend is here to stay.


Feature photo by Google DeepMind

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

The post Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab appeared on BitcoinEthereumNews.com. In brief Rekt Brands sold its 1 millionth can of its Rekt Drinks flavored sparkling water. The Web3 firm collaborated with payments infrastructure company MoonPay on a peach-raspberry flavor called “Moon Crush.” Rekt incentivizes purchasers of its drinks with the REKT token, which hit an all-time high market cap of $583 million in August. Web3 consumer firm Rekt Brands sold its 1 millionth can of its Rekt Drinks sparkling water on Friday, surpassing its first major milestone with the sold-out drop of its “Moon Crush” flavor—a peach raspberry-flavored collaboration with payments infrastructure firm MoonPay.  The sale follows Rekt’s previous sellout collaborations with leading Web3 brands like Solana DeFi protocol Jupiter, Ethereum layer-2 network Abstract, and Coinbase’s layer-2 network, Base. Rekt has already worked with a number of crypto-native brands, but says it has been choosy when cultivating collabs. “We have received a large amount of incoming enquiries from some of crypto’s biggest brands, but it’s super important for us to be selective in order to maintain the premium feel of Rekt,” Rekt Brands co-founder and CEO Ovie Faruq told Decrypt.  (Disclosure: Ovie Faruq’s Canary Labs is an investor in DASTAN, the parent company of Decrypt.) “We look to work with brands who are able to form partnerships that we feel are truly strategic to Rekt’s goal of becoming one of the largest global beverage brands,” he added. In particular, Faruq highlighted MoonPay’s role as a “gateway” between non-crypto and crypto users as a reason the collaboration made “perfect sense.”  “We’re thrilled to bring something to life that is both delicious and deeply connected to the crypto community,” MoonPay President Keith Grossman told Decrypt.  Rekt Brands has been bridging the gap between Web3 and the real world with sales of its sparkling water since November 2024. In its first sale,…
Share
BitcoinEthereumNews2025/09/20 09:24