This article provides the technical implementation details of the Tree-Diffusion architecture using PyTorch and NF-ResNet.This article provides the technical implementation details of the Tree-Diffusion architecture using PyTorch and NF-ResNet.

Implementation Details of Tree-Diffusion: Architecture and Training for Inverse Graphics

2025/09/27 09:23

Abstract and 1. Introduction

  1. Background & Related Work

  2. Method

    3.1 Sampling Small Mutations

    3.2 Policy

    3.3 Value Network & Search

    3.4 Architecture

  3. Experiments

    4.1 Environments

    4.2 Baselines

    4.3 Ablations

  4. Conclusion, Acknowledgments and Disclosure of Funding, and References

    \

Appendix

A. Mutation Algorithm

B. Context-Free Grammars

C. Sketch Simulation

D. Complexity Filtering

E. Tree Path Algorithm

F. Implementation Details

F Implementation Details

We implement our architecture in PyTorch [1]. For our image encoder we use the NF-ResNet26 [4] implementation from the open-sourced library by Wightman [38]. Images are of size 128 × 128 × 1 for CSG2D and 128 × 128 × 3 for TinySVG. We pass the current and target images as a stack of image planes into the image encoder. Additionally, we provide the absolute difference between current and target image as additional planes.

\

\ For the autoregressive (CSGNet) baseline, we trained the model to output ground-truth programs from target images, and provided a blank current image. For tree diffusion methods, we initialized the search and rollouts using the output of the autoregressive model, which counted as a single node expansion. For our re-implementation of Ellis et al. [11], we flattened the CSG2D tree into shapes being added from left to right. We then randomly sampled a position in this shape array, compiled the output up until the sampled position, and trained the model to output the next shape using constrained grammar decoding.

\ This is a departure from the pointer network architecture in their work. We think that the lack of prior shaping, departure from a graphics specific pointer network, and not using reinforcement learning to fine-tune leads to a performance difference between their results and our re-implementation. We note that our method does not require any of these additional features, and thus the comparison is fairer. For tree diffusion search, we used a beam size of 64, with a maximum node expansion budget of 5000 nodes.

\

:::info Authors:

(1) Shreyas Kapur, University of California, Berkeley (srkp@cs.berkeley.edu);

(2) Erik Jenner, University of California, Berkeley (jenner@cs.berkeley.edu);

(3) Stuart Russell, University of California, Berkeley (russell@cs.berkeley.edu).

:::


:::info This paper is available on arxiv under CC BY-SA 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

The post Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab appeared on BitcoinEthereumNews.com. In brief Rekt Brands sold its 1 millionth can of its Rekt Drinks flavored sparkling water. The Web3 firm collaborated with payments infrastructure company MoonPay on a peach-raspberry flavor called “Moon Crush.” Rekt incentivizes purchasers of its drinks with the REKT token, which hit an all-time high market cap of $583 million in August. Web3 consumer firm Rekt Brands sold its 1 millionth can of its Rekt Drinks sparkling water on Friday, surpassing its first major milestone with the sold-out drop of its “Moon Crush” flavor—a peach raspberry-flavored collaboration with payments infrastructure firm MoonPay.  The sale follows Rekt’s previous sellout collaborations with leading Web3 brands like Solana DeFi protocol Jupiter, Ethereum layer-2 network Abstract, and Coinbase’s layer-2 network, Base. Rekt has already worked with a number of crypto-native brands, but says it has been choosy when cultivating collabs. “We have received a large amount of incoming enquiries from some of crypto’s biggest brands, but it’s super important for us to be selective in order to maintain the premium feel of Rekt,” Rekt Brands co-founder and CEO Ovie Faruq told Decrypt.  (Disclosure: Ovie Faruq’s Canary Labs is an investor in DASTAN, the parent company of Decrypt.) “We look to work with brands who are able to form partnerships that we feel are truly strategic to Rekt’s goal of becoming one of the largest global beverage brands,” he added. In particular, Faruq highlighted MoonPay’s role as a “gateway” between non-crypto and crypto users as a reason the collaboration made “perfect sense.”  “We’re thrilled to bring something to life that is both delicious and deeply connected to the crypto community,” MoonPay President Keith Grossman told Decrypt.  Rekt Brands has been bridging the gap between Web3 and the real world with sales of its sparkling water since November 2024. In its first sale,…
Share
BitcoinEthereumNews2025/09/20 09:24