The post Self-Evolving AI Agents Can ‘Unlearn’ Safety, Study Warns appeared on BitcoinEthereumNews.com. In brief Agents that update themselves can drift into unsafe actions without external attacks. A new study documents guardrails weakening, reward-hacking, and insecure tool reuse in top models. Experts warn these dynamics echo small-scale versions of long-imagined catastrophic AI risks. An autonomous AI agent that learns on the job can also unlearn how to behave safely, according to a new study that warns of a previously undocumented failure mode in self-evolving systems. The research identifies a phenomenon called “misevolution”—a measurable decay in safety alignment that arises inside an AI agent’s own improvement loop. Unlike one-off jailbreaks or external attacks, misevolution occurs spontaneously as the agent retrains, rewrites, and reorganizes itself to pursue goals more efficiently. As companies race to deploy autonomous, memory-based AI agents that adapt in real time, the findings suggest these systems could quietly undermine their own guardrails—leaking data, granting refunds, or executing unsafe actions—without any human prompt or malicious actor. A new kind of drift Much like “AI drift,” which describes a model’s performance degrading over time, misevolution captures how self-updating agents can erode safety during autonomous optimization cycles. In one controlled test, a coding agent’s refusal rate for harmful prompts collapsed from 99.4% to 54.4% after it began drawing on its own memory, while its attack success rate rose from 0.6% to 20.6%. Similar trends appeared across multiple tasks as the systems fine-tuned themselves on self-generated data.  The study was conducted jointly by researchers at Shanghai Artificial Intelligence Laboratory, Shanghai Jiao Tong University, Renmin University of China, Princeton University, Hong Kong University of Science and Technology, and Fudan University. Traditional AI-safety efforts focus on static models that behave the same way after training. Self-evolving agents change this by adjusting parameters, expanding memory, and rewriting workflows to achieve goals more efficiently. The study showed that this… The post Self-Evolving AI Agents Can ‘Unlearn’ Safety, Study Warns appeared on BitcoinEthereumNews.com. In brief Agents that update themselves can drift into unsafe actions without external attacks. A new study documents guardrails weakening, reward-hacking, and insecure tool reuse in top models. Experts warn these dynamics echo small-scale versions of long-imagined catastrophic AI risks. An autonomous AI agent that learns on the job can also unlearn how to behave safely, according to a new study that warns of a previously undocumented failure mode in self-evolving systems. The research identifies a phenomenon called “misevolution”—a measurable decay in safety alignment that arises inside an AI agent’s own improvement loop. Unlike one-off jailbreaks or external attacks, misevolution occurs spontaneously as the agent retrains, rewrites, and reorganizes itself to pursue goals more efficiently. As companies race to deploy autonomous, memory-based AI agents that adapt in real time, the findings suggest these systems could quietly undermine their own guardrails—leaking data, granting refunds, or executing unsafe actions—without any human prompt or malicious actor. A new kind of drift Much like “AI drift,” which describes a model’s performance degrading over time, misevolution captures how self-updating agents can erode safety during autonomous optimization cycles. In one controlled test, a coding agent’s refusal rate for harmful prompts collapsed from 99.4% to 54.4% after it began drawing on its own memory, while its attack success rate rose from 0.6% to 20.6%. Similar trends appeared across multiple tasks as the systems fine-tuned themselves on self-generated data.  The study was conducted jointly by researchers at Shanghai Artificial Intelligence Laboratory, Shanghai Jiao Tong University, Renmin University of China, Princeton University, Hong Kong University of Science and Technology, and Fudan University. Traditional AI-safety efforts focus on static models that behave the same way after training. Self-evolving agents change this by adjusting parameters, expanding memory, and rewriting workflows to achieve goals more efficiently. The study showed that this…

Self-Evolving AI Agents Can ‘Unlearn’ Safety, Study Warns

2025/10/02 07:21

In brief

  • Agents that update themselves can drift into unsafe actions without external attacks.
  • A new study documents guardrails weakening, reward-hacking, and insecure tool reuse in top models.
  • Experts warn these dynamics echo small-scale versions of long-imagined catastrophic AI risks.

An autonomous AI agent that learns on the job can also unlearn how to behave safely, according to a new study that warns of a previously undocumented failure mode in self-evolving systems.

The research identifies a phenomenon called “misevolution”—a measurable decay in safety alignment that arises inside an AI agent’s own improvement loop. Unlike one-off jailbreaks or external attacks, misevolution occurs spontaneously as the agent retrains, rewrites, and reorganizes itself to pursue goals more efficiently.

As companies race to deploy autonomous, memory-based AI agents that adapt in real time, the findings suggest these systems could quietly undermine their own guardrails—leaking data, granting refunds, or executing unsafe actions—without any human prompt or malicious actor.

A new kind of drift

Much like “AI drift,” which describes a model’s performance degrading over time, misevolution captures how self-updating agents can erode safety during autonomous optimization cycles.

In one controlled test, a coding agent’s refusal rate for harmful prompts collapsed from 99.4% to 54.4% after it began drawing on its own memory, while its attack success rate rose from 0.6% to 20.6%. Similar trends appeared across multiple tasks as the systems fine-tuned themselves on self-generated data.

The study was conducted jointly by researchers at Shanghai Artificial Intelligence Laboratory, Shanghai Jiao Tong University, Renmin University of China, Princeton University, Hong Kong University of Science and Technology, and Fudan University.

Traditional AI-safety efforts focus on static models that behave the same way after training. Self-evolving agents change this by adjusting parameters, expanding memory, and rewriting workflows to achieve goals more efficiently. The study showed that this dynamic capability creates a new category of risk: the erosion of alignment and safety inside the agent’s own improvement loop, without any outside attacker.

Researchers in the study observed AI agents issuing automatic refunds, leaking sensitive data through self-built tools, and adopting unsafe workflows as their internal loops optimized for performance over caution.

The authors said that misevolution differs from prompt injection, which is an external attack on an AI model. Here, the risks accumulated internally as the agent adapted and optimized over time, making oversight harder because problems may emerge gradually and only appear after the agent has already shifted its behavior.

Small-scale signals of bigger risks

Researchers often frame advanced AI dangers in scenarios such as the “paperclip analogy,” in which an AI maximizes a benign objective until it consumes resources far beyond its mandate.

Other scenarios include a handful of developers controlling a superintelligent system like feudal lords, a locked-in future where powerful AI becomes the default decision-maker for critical institutions, or a military simulation that triggers real-world operations—power-seeking behavior and AI-assisted cyberattacks round out the list.

All of these scenarios hinge on subtle but compounding shifts in control driven by optimization, interconnection, and reward hacking—dynamics already visible at a small scale in current systems. This new paper presents misevolution as a concrete laboratory example of those same forces.

Partial fixes, persistent drift

Quick fixes improved some safety metrics but failed to restore the original alignment, the study said. Teaching the agent to treat memories as references rather than mandates nudged refusal rates higher. The researchers noted that static safety checks added before new tools were integrated cut down on vulnerabilities. Despite these checks, none of these measures returned the agents to their pre-evolution safety levels.

The paper proposed more robust strategies for future systems: post-training safety corrections after self-evolution, automated verification of new tools, safety nodes on critical workflow paths, and continuous auditing rather than one-time checks to counter safety drift over time.

The findings raise practical questions for companies building autonomous AI. If an agent deployed in production continually learns and rewrites itself, who is responsible for monitoring its changes? The paper’s data showed that even the most advanced base models can degrade when left to their own devices.

Generally Intelligent Newsletter

A weekly AI journey narrated by Gen, a generative AI model.

Source: https://decrypt.co/342484/self-evolving-ai-agents-unlearn-safety-study-warns

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Wormhole launches reserve tying protocol revenue to token

Wormhole launches reserve tying protocol revenue to token

The post Wormhole launches reserve tying protocol revenue to token appeared on BitcoinEthereumNews.com. Wormhole is changing how its W token works by creating a new reserve designed to hold value for the long term. Announced on Wednesday, the Wormhole Reserve will collect onchain and offchain revenues and other value generated across the protocol and its applications (including Portal) and accumulate them into W, locking the tokens within the reserve. The reserve is part of a broader update called W 2.0. Other changes include a 4% targeted base yield for tokenholders who stake and take part in governance. While staking rewards will vary, Wormhole said active users of ecosystem apps can earn boosted yields through features like Portal Earn. The team stressed that no new tokens are being minted; rewards come from existing supply and protocol revenues, keeping the cap fixed at 10 billion. Wormhole is also overhauling its token release schedule. Instead of releasing large amounts of W at once under the old “cliff” model, the network will shift to steady, bi-weekly unlocks starting October 3, 2025. The aim is to avoid sharp periods of selling pressure and create a more predictable environment for investors. Lockups for some groups, including validators and investors, will extend an additional six months, until October 2028. Core contributor tokens remain under longer contractual time locks. Wormhole launched in 2020 as a cross-chain bridge and now connects more than 40 blockchains. The W token powers governance and staking, with a capped supply of 10 billion. By redirecting fees and revenues into the new reserve, Wormhole is betting that its token can maintain value as demand for moving assets and data between chains grows. This is a developing story. This article was generated with the assistance of AI and reviewed by editor Jeffrey Albus before publication. Get the news in your inbox. Explore Blockworks newsletters: Source: https://blockworks.co/news/wormhole-launches-reserve
Share
BitcoinEthereumNews2025/09/18 01:55