This section provides a theoretical justification for WormHole’s strong performance by analyzing its behavior on Chung-Lu random graphs—models known for their power-law degree distributions common in real-world social networks. Drawing on existing theorems, the analysis shows that under specific degree and diameter conditions, WormHole maintains sublinear complexity and consistent accuracy, explaining its scalability and efficiency in practice.This section provides a theoretical justification for WormHole’s strong performance by analyzing its behavior on Chung-Lu random graphs—models known for their power-law degree distributions common in real-world social networks. Drawing on existing theorems, the analysis shows that under specific degree and diameter conditions, WormHole maintains sublinear complexity and consistent accuracy, explaining its scalability and efficiency in practice.

Understanding Power-Law Degree Distributions in Random Graphs

Abstract and 1. Introduction

1.1 Our Contribution

1.2 Setting

1.3 The algorithm

  1. Related Work

  2. Algorithm

    3.1 The Structural Decomposition Phase

    3.2 The Routing Phase

    3.3 Variants of WormHole

  3. Theoretical Analysis

    4.1 Preliminaries

    4.2 Sublinearity of Inner Ring

    4.3 Approximation Error

    4.4 Query Complexity

  4. Experimental Results

    5.1 WormHole𝐸, WormHole𝐻 and BiBFS

    5.2 Comparison with index-based methods

    5.3 WormHole as a primitive: WormHole𝑀

References

4 THEORETICAL ANALYSIS

It is a relatively standard observation that many social networks exhibit, at least approximately, a power-law degree distribution (see, e.g., [9] and the many references within). The Chung-Lu model [41] is a commonly studied random graph model which admits such degree distribution.

\ In this section we provide a proof-of-concept for the correctness of WormHole on Chung-Lu random graphs, aiming to explain the good performance in practice through the study of a popular theoretical model. We sometimes only include proof sketches instead of full proofs, in the interest of saving space.

4.1 Preliminaries

\ Theorem 4.1 (Theorem 4 in [16]). Suppose a power law random graph with exponent 2<𝛽 <3, average degree 𝑑 strictly greater than 1, and maximum degree 𝑑𝑚𝑎𝑥 > log𝑛/log log𝑛. Then almost surely the diameter is Θ(log𝑛), the diameter of the CCL core is 𝑂(loglog𝑛) and almost all vertices are within distance𝑂(loglog𝑛) to CCL.

\ **Claim 4.2 (**Fact 2 in [15]). With probability at least 1−1/𝑛, for all vertices𝑣 ∈𝑉 such that𝑤(𝑣) ≥10logn

\

\ and for all vertices with𝑤(𝑣) ≤10log𝑛, 𝑑 (𝑣) ≤20log𝑛.

\

4.2 Sublinearity of Inner Ring

\

\ \ \

\ \ \

\ \ \

:::info Authors:

(1) Talya Eden, Bar-Ilan University (talyaa01@gmail.com);

(2) Omri Ben-Eliezer, MIT (omrib@mit.edu);

(3) C. Seshadhri, UC Santa Cruz (sesh@ucsc.edu).

:::


:::info This paper is available on arxiv under CC BY 4.0 license.

:::

\

Market Opportunity
RealLink Logo
RealLink Price(REAL)
$0.07446
$0.07446$0.07446
+0.81%
USD
RealLink (REAL) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.