This conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic techniqueThis conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic technique

Holography Light: Justification and Future Theory

  • Prologue
  • Diagrammatic(s) Rules
  • Straight-forward Eikonal
  • Legacy Bosonization
  • Wonton Holography
  • Holographic Propagators
  • Strange Cuprates
  • Stranger Things
  • Epilogue

Epilogue

\ Importantly, even a perfect match between the holographic and some other (believed to be comparatively better established) results would not provide a firm justification for the holographic technique itself. Indeed, any results obtained under the assumption of a purely classical (non-dynamical) background metric - which assumption is overwhelmingly common to the practical applications of the holographic approach - would only pertain to its ’light’ version, as opposed to the full-fledged one. As to the possible desk-top simulations of such a ’holography light’ scenario, those have been proposed for several platforms, including flexible graphene flakes [55] and hyperbolic metamaterials [56].

\ Projecting into the future, it seems quite likely that the ultimate theory of correlated quantum matter will eventually assume a form akin to quantum hydrodynamics formulated in terms of the moments of quantum distribution function [57]. Such a collective-field description of the bulk (a.k.a. ’phase’) space with the d-dimensional momentum providing for the extra dimensions could be equally well called either bosonization, or holography. Regardless of the name, though, taking a full advantage of this formally exact approach might turn out to be difficult, especially in the physically relevant cases of N ∼ 1 and moderate coupling strengths.

\ Nevertheless, there still seems to be no good reason neither for this theory to conform to anything as specific and convenient as the EMD Lagrangian (22), nor for the corresponding holographic dictionary to be copy-pasted ’ad verbatim’ from string/HEP theory.

\ One would hope that exposing the existing controversy over this and related issues might be helpful to authors of the future original (of course) studies on the topic - as well as their knowledgeable and unbiased (of course) referees.

\ This note was compiled, in part, while staying at and being supported by the Aspen Center for Physics under the NSF Grant PHY-1607611.

\


\

  1. T. Holstein, R. E. Norton and P. Pincus, Phys. Rev. B 8, 2649 (1973); M. Y. Reizer, Phys.Rev.B39, 1609 (1989); ibid, B40, 11571 (1989).

    \

  2. C.J.Pethick, G.Baym, and H.Monien, Nucl.Phys.A498, 313c (1989).

    \

  3. P. A. Lee, Phys. Rev. Lett. 63, 680 (1989); L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989); P.A. Lee and N. Nagaosa, ; Phys. Rev. Lett. 64, 2450 (1990); Phys. Rev. B46, 5621 (1992); J.Gan and E. Wong, Phys. Rev. Lett. 71, 4226 (1993); C. Nayak and F. Wilczek, Nucl. Phys. B 430, 534 (1994); S.Chakravarty et al., Phys. Rev. Lett. 75, 3584 (1995).

    \

  4. C. Castellani and C. Di Castro, Physica C 235-240, 99 (1994); C. Castellani et al., Phys. Rev. Lett. 72, 316 (1994); W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006); Phys. Rev. Lett. 98, 136402 (2007).

    \

  5. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993)

    \

  6. A. Chubukov, C. Pepin and J. Rech, Phys. Rev. Lett. 92, 147003 (2004); Phys. Rev. B 74, 195126 (2006); A. V. Chubukov, Phys. Rev. B71, 245123 (2005);

    \

  7. A. V. Chubukov, D. V. Khveshchenko, Phys. Rev. Lett. v.97 p.226403 (2006), cond-mat/0604376.

    \

  8. T. A. Sedrakyan and A. V. Chubukov, Phys. Rev. B 79, 115129 (2009), arXiv:0901.1459.

    \

  9. S.-S. Lee, Phys. Rev. B 78, 085129 (2008), Phys. Rev. D 79, 086006 (2009); 2009. Phys. Rev. B 80:165102; Metlitski M, Sachdev S. 2010. Phys. Rev. B 82:075127; 2010. Phys. Rev. B 82:075128.

    \

  10. D. F. Mross et al, Phys. Rev. B 82 (2010) 045121; arXiv:1003.0894; Raghu S, Torroba G, Wang H. 2015. Phys. Rev. B 92:205104 Fitzpatrick A.L. et al, 2015. Phys. Rev. B92:045118 A. Eberlein, I. Mandal, S. Sachdev, Phys. Rev. B 94, 045133 (2016), arXiv:1605.00657.

    \

  11. B.L. Altshuler and L.B. Ioffe, Phys. Rev. Lett. 69, 2979 (1992); E.Altshuler et al, arXiv:cond-mat/9404071; A. Mirlin, E. Altshuler, P. Woelfle, Ann. Physik 5 (1996) 281; I.V. Gornyi, A. Mirlin, Phys. Rev. E 65 (2002) 025202; D. Taras-Semchuk, K. B. Efetov, Phys. Rev. B 64, 115301 (2001).

    \

  12. D. V. Khveshchenko and S. V. Meshkov, Phys. Rev. B 47, 12051 (1993); D. V. Khveshchenko, Phys. Rev. Lett. 77, 1817 (1996).

    \

  13. P.C.E.Stamp, Phys.Rev.Lett.68, 2180 (1992); J.Phys.(France) 3, 625 (1993).

    \

  14. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71, 2118 (1993); Phys. Rev. B 49, 5227 (1994);

    \

  15. M. J. Lawler et al, Phys. Rev. B 73, 085101 (2006); cond-mat/0508747; M. J. Lawler, E. Fradkin, Phys. Rev. B 75, 033304 (2007); cond-mat/0605203.

    \

  16. P.S¨aterskog, B. Meszena, and K. Schalm, Phys. Rev. B 96, 155125 (2017), arXiv:1612.05326; P.S¨aterskog, SciPost Phys. 4, 015 (2018), arXiv:1711.04338.

    \

  17. Tomer Ravid, Tom Banks, arxiv.org/abs/2208.01183.

    \

  18. L. B. Ioffe, D. Lidsky, and B. L. Altshuler, Phys. Rev. Lett. 73, 472 (1994); B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994); ibid B52, 5563 (1995); ibid B53, 415 (1996); B.L.Altshuler et al, ibid B52, 4607 (1995).

    \

  19. A. Luther, Phys. Rev. B 19, 320 (1979). F. D. M. Haldane, Helv. Phys. Acta. 65, 152 (1992); A. Houghton and J. B. Marston, Phys. Rev. B 48, 7790 (1993); A. Houghton et al., ibid. 50, 1351 (1994); J. Phys. 6, 4909 (1994); H.-J. Kwon et al., Phys. Rev. Lett. 73, 284 (1994); Phys. Rev. B 52, 8002 (1995); A. H. Castro Neto and E. Fradkin, Phys. Rev. Lett. 72, 1393 (1994); Phys. Rev. B 49, 10877 (1994); ibid. 51,4048 (1995); P. Kopietz et al., Phys. Rev. B 52, 10877 (1995); A. Houghton, H. J. Kwon, and J. B. Marston, Adv. Phys. 49, 141 (2000). J. Nilsson and A. H. Castro Neto, Phys. Rev. B 72, 195104 (2005).

    \

  20. D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev. B 48, 10766 (1993).

    \

  21. D. V. Khveshchenko, Phys. Rev. B 49, 16893 (1994); ibid B 52, 4833 (1995).L.V. Delacretaz et al, Phys. Rev. Research 4, 033131 (2022), arXiv:2203.05004.

    \

  22. W. Metzner,C.Castellani, C, Di Castro, Advances in Physics, 47, 317 (1998).P. Kopietz and G. E. Castilla, Phys. Rev. Lett. 76, 4777 (1996); ibid 78, 314 (1997).K. B. Efetov, C. Pepin, H. Meier, Phys. Rev. Lett. 103,186403 (2009); Phys. Rev. B 82, 235120 (2010).

    \

  23. S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); C. P. Herzog, J.Phys. A42 343001 (2009); J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010); J. Polchinski, arXiv:1010.6134; J. McGreevy, Adv.High Energy Phys. 2010, 723105 (2010); S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); S.Sachdev, Annual Review of Cond. Matt. Phys.3,9 (2012); J. Zaanen et al, ’Holographic Duality in Condensed Matter Physics’, Cambridge University Press, 2015; M. Ammon and J. Erdmenger, ’Gauge/Gravity Duality’, Cambridge University Press, 2015; S.A. Hartnoll, A.Lucas, and S. Sachdev, ’Holographic Quantum Matter’, MIT Press, 2018; J. Zaanen,arXiv:2110.00961.S. Kachru, X. Liu and M. Mulligan, Phys. Rev. D 78, 106005 (2008); S. A. Hartnoll and A. Tavanfar, Phys. Rev. D 83, 046003 (2011); S. A. Hartnoll, D. M. Hofman, and D. Vegh, arXiv:1105.3197; S. A. Hartnoll et al, JHEP 1004, 120 (2010); V. G. M. Puletti et al, JHEP 1101, 117 (2011); M. Edalati, R. G. Leigh and P. W. Phillips, Phys. Rev. Lett. 106, 091602 (2011); M. Edalati et al, Phys. Rev. D 83, 046012 (2011).

    \

  24. S. S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy and D. Vegh, arXiv:0903.2477; M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009), arXiv:0904.1993; arXiv:1012.5681; T. Faulkner et al,arXiv:0907.2694,1003.1728,1101.0597,1306.6396; N. Iizuka et al, arXiv:1105.1162; D. Guarrera and J. McGreevy, arXiv:1102.3908; K. Jensen et al, arXiv:1105.1772; L. Huijse, S. Sachdev, arXiv:1104.5022; L.Huijse, S.Sachdev, B.Swingle,arXiv:1112.0573; F.Herˇcek, V. Gecin, M. Cubrovi´c, 2208.05920. ˇ 29 C.Charmousis et al, JHEP 1011, 151 (2010); E

    \

  25. C.Charmousis et al, JHEP 1011, 151 (2010); E. Perlmutter, JHEP 06 28 2012Xi Dong et al, JHEP 1206 041, 2012, arXiv:1201.1905; B.S.Kim, JHEP 1206 (2012) 116, arXiv:1202.6062.

    \

  26. D. V. Khveshchenko, Phys. Rev. B 86, 115115 (2012), arXiv:1205.4420.

    \

  27. S. Sachdev and J. Ye, Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030; S. Sachdev, Phys.Rev.Lett.105, 151602 (2010); Phys. Rev. D 84, 066009 (2011); Phys.Rev.X5, 041025 (2015); A. Kitaev, KITP seminars, 2015; arXiv:1711.08169; A. Kitaev and S. J. Suh, JHEP05(2018)183, arXiv:1711.08467;1808.07032; S.Sachdev, arXiv:2205.02285.

    \

  28. D. V. Khveshchenko, SciPost Phys. 5 012 (2018),arXiv:1705.03956; Condens. Matter 2018, 3(4), 40,arXiv:1805.00870; ibid 2020, 5, 37, arXiv:2004.06646.

    \

  29. Erez Berg et al, Annual Review of Condensed Matter Physics 2019 10,63,arXiv:1804.01988; Y. Schattner et al, Phys. Rev. X 6, 031028 (2016); S. Lederer et al, PNAS 114(19), 4905 (2017); X.Y.Xu et al, Phys. Rev. X 7, 031058 (2017); X.Y.Xu et al, npj Quantum Mater. 5, 65 (2020),arXiv:2003.11573; A.Klein et al, Phys. Rev. X 10, 031053 (2020),arXiv:2003.09431.

    \

  30. D.V.Khveshchenko, Lith.J.Phys.,55,208(2015), arXiv:1404.7000; ibid 56,125(2016),arXiv:1603.09741.

    \

  31. M.Mitrano et al, PNAS (2018), 21, 495; Romero-Bermudez J. et al, Phys. Rev. B 99, 235149 (2019); A.A.Husain et al, Phys. Rev. X 9, 041062 (2019); P. W. Phillips, N. E. Hussey, P. Abbamonte, Science, 377, 1-10 (2022); B. Michon et al, arXiv:2205.04030; E. van Heumen et al, Phys Rev B106, 054515 (2022); F. Balm et al, 2211.05492.

    \

  32. D. V. Khveshchenko, Lith.J.Phys.,59,104(2019), arXiv:1905.04381; ibid 60,185(2020),arXiv:1912.05691; ibid 62 2(2022),arXiv:2205.11478.

    \

  33. S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010),arXiv:0911.2898.

    \

  34. D. V. Khveshchenko, EPL 111 (2015) 1700, arXiv:1502.03375; Lith. J. of Phys. 61, 1 (2021), arXiv:2011.11617.

    \

  35. S.A. Hartnoll and A.Karch, Phys. Rev. B 91, 155126 (2015); A. Karch, K. Limtragool, P. W. Phillips, JHEP 2016, 175 (2016), arXiv:1511.02868; A. Amoretti and D. Musso, JHEP 1509 (2015) 094; A. Amoretti et al, Adv. in Phys. X, v.2, 409 (2017); Phys. Rev. Res 2, 023387 (2020).

    \

  36. A.A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019); Phys. Rev. B 98 125134 (2018); D. Miserev, J. Klinovaja, and D. Loss, Phys. Rev. B 103 075104 (2021); D. Chowdhury et al,arXiv:2109.05037; I. Esterlis et al,Phys. Rev. B 103, 235129; D. Chowdhury and E. Berg, Phys. Rev. Research 2 013301 (2020); P. Cha et al, Phys. Rev. Research 2 033434 (2020); H. Guo, Y. Gu, and S. Sachdev, Phys. Rev. B 100, 045140; A.A.Patel et al, arXiv:2203.04990; I. Esterlis et al, Phys. Rev. B 103, 235129 (2021), arXiv:2103.08615; D, Chowdhury et al, Reviews of Modern Physics 94, 035004 (2022), [arXiv:2109.05037]; A.A. Patel et al, arXiv:2203.04990; Wang, X., Chowdhury, D., arXiv:2209.05491; H. Guo et al, Phys. Rev. B 106, 115151 (2022).

    \

  37. G. T. Horowitz, J. E. Santos, and D. Tong, JHEP, 07 (2012) 168, arXiv:1204.0519; ibid 011 (2012) 102, arXiv:1209.1098.

    \

  38. A. Donos and J. P. Gauntlett, JHEP 04 (2014); 040; M. Rangamani, M. Rozali, and D. Smyth, ibid 07 (2015) 024; B. W. Langley, G. Vanacore, and P. W. Phillips, arXiv:1506.06769.

    \

  39. G. A. Inkof, K. Schalm, J. Schmalian, NPJ Quantum Materials volume 7, 56 (2022), arXiv:2108.11392; J.Schmalian, arXiv:2209.00474;

    \

  40. B. Meszena et al, Phys. Rev. B 94, 115134, arXiv:1602.05360; P.S¨aterskog, SciPost Phys. 10, 067 (2021), arXiv:2010.03077.

    \

  41. P. Nozieres, J. Phys. (Paris) 2, 443 (1992).

    \

  42. J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis, Phys. Rev. B 45, 13047 (1992); Ar. Abanov, A. V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003), arXiv: cond-mat/0107421.

    \

  43. T.D.Son, Phys. Rev. X 5, 031027 (2015), arXiv:1502.03446; Prog. Theor. Exp. Phys. 2016, 12C103, arXiv:1608.05111; Annu. Rev. Condens. Matter Phys. 9, 397 (2018), arXiv:1805.04472.

    \

  44. D. V. Khveshchenko, Phys. Rev. B 75, 153405 (2007), arXiv:cond-mat/0607174.

    \

  45. H.Schulz, Phys.Rev.Lett.71, 1864 (1993).

    \

  46. W. Rantner and X-G. Wen, Phys. Rev. Lett. 86, 3871 (2001); J. Ye, Phys. Rev. Lett.87, 227003 (2001); M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003 (2001).

    \

  47. D. V. Khveshchenko, Phys. Rev. Lett. 90, 199701 (2003), arXiv:cond-mat/0306079; ibid 91, 269701 (2003), arXiv:cond-mat/0306080; Phys. Rev. B 65, 235111 (2002), arXiv:cond-mat/0112202; Nucl. Phys. B642, 515 (2002, arXiv:cond-mat/0204040; arXiv:cond-mat/0205106; V. P. Gusynin, D.V. Khveshchenko, and M. Reenders, Phys. Rev. B 67, 115201 (2003), arXiv:cond-mat/0207372.

    \

  48. 5 E. Bagan, M. Lavelle and D. McMullan, Annals of Phys. 282, 471, 503 (2000).

    \

  49. D. V. Khveshchenko and A. G. Yashenkin, Phys. Lett. A, v.309, p.363 (2003), arXiv:cond-mat/0202173; Phys. Rev. B 67, 052502 (2003), arXiv:cond-mat/0204215;

    \

  50. D. V. Khveshchenko, Phys. Rev. B 75, 241406(R) (2007), arXiv:cond-mat/0611485; EPL, p.57008, v.82 (2008), arXiv:0705.4105.

    \

  51. D. V. Khveshchenko, EPL, 104, 47002 (2013), arXiv:1305.6651.

    \

  52. D. V. Khveshchenko, EPL, 109, 61001 (2015), arXiv:1411.1693.

    \

  53. D. V. Khveshchenko, Lith. J. of Phys., 61, 233, 2021, arXiv:2102.01617.

\

:::info Author:

(1) D. V. Khveshchenko, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Market Opportunity
Bitlight Labs Logo
Bitlight Labs Price(LIGHT)
$1.3919
$1.3919$1.3919
+0.78%
USD
Bitlight Labs (LIGHT) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

JPMorgan’s Sobering Reality Check On The $1 Trillion Dream

JPMorgan’s Sobering Reality Check On The $1 Trillion Dream

The post JPMorgan’s Sobering Reality Check On The $1 Trillion Dream appeared on BitcoinEthereumNews.com. Imagine a world where stablecoins, the digital dollars
Share
BitcoinEthereumNews2025/12/19 07:07
Will XRP Price Increase In September 2025?

Will XRP Price Increase In September 2025?

Ripple XRP is a cryptocurrency that primarily focuses on building a decentralised payments network to facilitate low-cost and cross-border transactions. It’s a native digital currency of the Ripple network, which works as a blockchain called the XRP Ledger (XRPL). It utilised a shared, distributed ledger to track account balances and transactions. What Do XRP Charts Reveal? […]
Share
Tronweekly2025/09/18 00:00
CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56