Ollama is an open-source platform for running and managing large-language-model (LLM) packages entirely on your local machine. It bundles model weights, configurationOllama is an open-source platform for running and managing large-language-model (LLM) packages entirely on your local machine. It bundles model weights, configuration

Complete Ollama Tutorial (2026) – LLMs via CLI, Cloud & Python

\ Ollama has become the standard for running Large Language Models (LLMs) locally. In this tutorial, I want to show you the most important things you should know about Ollama.

https://youtu.be/AGAETsxjg0o?embedable=true

Watch on YouTube: Ollama Full Tutorial

What is Ollama?

Ollama is an open-source platform for running and managing large-language-model (LLM) packages entirely on your local machine. It bundles model weights, configuration, and data into a single Modelfile package. Ollama offers a command-line interface (CLI), a REST API, and a Python/JavaScript SDK, allowing users to download models, run them offline, and even call user-defined functions. Running models locally gives users privacy, removes network latency, and keeps data on the user’s device.

Install Ollama

Visit the official website to download Ollama https://ollama.com/. It’s available for Mac, Windows, and Linux.

\ Linux:

curl -fsSL https://ollama.com/install.sh | sh

macOS:

brew install ollama

Windows: download the .exe installer and run it.

How to Run Ollama

Before running models, it is essential to understand Quantization. Ollama typically runs models quantized to 4 bits (q4_0), which significantly reduces memory usage with minimal loss in quality.

Recommended Hardware:

  • 7B Models (e.g., Llama 3, Mistral): Requires ~8GB RAM (runs on most modern laptops).

  • 13B — 30B Models: Requires 16GB — 32GB RAM.

  • 70B+ Models: Requires 64GB+ RAM or dual GPUs.

  • GPU: An NVIDIA GPU or Apple Silicon (M1/M2/M3) is highly recommended for speed.

\ Go to the Ollama website and click on the “Models” and select the model for your test.

After that, click on the model name and copy the terminal command:

Then, open the terminal window and paste the command:

It will allow you to download and chat with a model immediately.

Ollama CLI — Core Commands

Ollama’s CLI is central to model management. Common commands include:

  • ollama pull — Download a model
  • ollama run — Run a model interactively
  • ollama list or ollama ls — List downloaded models
  • ollama rm — Remove a model
  • ollama create -f — Create a custom model
  • ollama serve — Start the Ollama API server
  • ollama ps — Show running models
  • ollama stop — Stop a running model
  • ollama help — Show help

Advanced Customization: Custom model with Modelfiles

You can “fine-tune” a model’s personality and constraints using a Modelfile. This is similar to a Dockerfile.

  • Create a file named Modelfile
  • Add the following configuration:

# 1. Base the model on an existing one FROM llama3 # 2. Set the creative temperature (0.0 = precise, 1.0 = creative) PARAMETER temperature 0.7 # 3. Set the context window size (default is 4096 tokens) PARAMETER num_ctx 4096 # 4. Define the System Prompt (The AI’s “brain”) SYSTEM """ You are a Senior Python Backend Engineer. Only answer with code snippets and brief technical explanations. Do not be conversational. """

FROM defines the base model

SYSTEM sets a system prompt

PARAMETER controls inference behavior

After that, you need to build the model by using this command:

ollama create [change-to-your-custom-name] -f Modelfile

This wraps the model + prompt template together into a reusable package.

Then run in:

ollama run [change-to-your-custom-name]

Press enter or click to view image in full size

Ollama Server (Local API)

Ollama can run as a local server that apps can call. To start the server use the command:

ollama serve

It listens on http://localhost:11434 by default.

Raw HTTP

import requests r = requests.post( "http://localhost:11434/api/chat", json={ "model": "llama3", "messages": [{"role":"user","content":"Hello Ollama"}] } ) print(r.json()["message"]["content"])

This lets you embed Ollama into apps or services.

Python Integration

Use Ollama inside Python applications with the official library. Run these commands:

Create and activate virtual environments:

python3 -m venv .venv source .venv/bin/activate

Install the official library:

pip install ollama

Use this simple Python code:

import ollama # This sends a message to the model 'gemma:2b' response = ollama.chat(model='gemma:2b', messages=[ { 'role': 'user', 'content': 'Write a short poem about coding.' }, ]) # Print the AI's reply print(response['message']['content'])

This works over the local API automatically when Ollama is running.

You can also call a local server:

import requests r = requests.post( "http://localhost:11434/api/chat", json={ "model": "llama3", "messages": [{"role":"user","content":"Hello Ollama"}] } ) print(r.json()["message"]["content"])

Using Ollama Cloud

Ollama also supports cloud models — useful when your machine can’t run very large models.

First, create an account on https://ollama.com/cloud and sign in. Then, inside the Models pag,e click on the cloud link and select any model you want to test.

\ In the models list, you will see the model with the -cloud prefix**,** which means it is available in the Ollama cloud.

Click on it and copy the CLI command. Then, inside the terminal, use:

ollama signin

To sign in to your Ollama account. Once you sign in with ollama signin, then run cloud models:

ollama run nemotron-3-nano:30b-cloud

Your Own Model in the Cloud

While Ollama is local-first, Ollama Cloud allows you to push your custom models (the ones you built with Modelfiles) to the web to share with your team or use across devices.

  • Create an account at ollama.com.
  • Add your public key (found in ~/.ollama/id_ed25519.pub).
  • Push your custom model:

ollama push your-username/change-to-your-custom-model-name

Conclusion

That is the complete overview of Ollama! It is a powerful tool that gives you total control over AI. If you like this tutorial, please like it and share your feedback in the section below.

Cheers! ;)

\

Market Opportunity
Octavia Logo
Octavia Price(VIA)
$0.0093
$0.0093$0.0093
-7.92%
USD
Octavia (VIA) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Top Altcoins To Hold Before 2026 For Maximum ROI – One Is Under $1!

Top Altcoins To Hold Before 2026 For Maximum ROI – One Is Under $1!

BlockchainFX presale surges past $7.5M at $0.024 per token with 500x ROI potential, staking rewards, and BLOCK30 bonus still live — top altcoin to hold before 2026.
Share
Blockchainreporter2025/09/18 01:16
Shiba Inu Price Forecast: Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

Shiba Inu Price Forecast: Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

While Shiba Inu (SHIB) continues to build its ecosystem and PEPE holds onto its viral roots, a new contender, Layer […] The post Shiba Inu Price Forecast: Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale appeared first on Coindoo.
Share
Coindoo2025/09/18 01:13
Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

The post Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 20:13 The meme coin market is heating up once again as traders look for the next breakout token. While Shiba Inu (SHIB) continues to build its ecosystem and PEPE holds onto its viral roots, a new contender, Layer Brett (LBRETT), is gaining attention after raising more than $3.7 million in its presale. With a live staking system, fast-growing community, and real tech backing, some analysts are already calling it “the next PEPE.” Here’s the latest on the Shiba Inu price forecast, what’s going on with PEPE, and why Layer Brett is drawing in new investors fast. Shiba Inu price forecast: Ecosystem builds, but retail looks elsewhere Shiba Inu (SHIB) continues to develop its broader ecosystem with Shibarium, the project’s Layer 2 network built to improve speed and lower gas fees. While the community remains strong, the price hasn’t followed suit lately. SHIB is currently trading around $0.00001298, and while that’s a decent jump from its earlier lows, it still falls short of triggering any major excitement across the market. The project includes additional tokens like BONE and LEASH, and also has ongoing initiatives in DeFi and NFTs. However, even with all this development, many investors feel the hype that once surrounded SHIB has shifted elsewhere, particularly toward newer, more dynamic meme coins offering better entry points and incentives. PEPE: Can it rebound or is the momentum gone? PEPE saw a parabolic rise during the last meme coin surge, catching fire on social media and delivering massive short-term gains for early adopters. However, like most meme tokens driven largely by hype, it has since cooled off. PEPE is currently trading around $0.00001076, down significantly from its peak. While the token still enjoys a loyal community, analysts believe its best days may be behind it unless…
Share
BitcoinEthereumNews2025/09/18 02:50