Simulations validate the proposed UAV‑CRN optimization algorithm, showing improved rates, convergence, and insights into propulsion power and IT constraints.Simulations validate the proposed UAV‑CRN optimization algorithm, showing improved rates, convergence, and insights into propulsion power and IT constraints.

Numerical Validation of UAV‑CRN Optimization: Improved Rates Under Energy and PLoS Constraints

2025/08/25 10:30

Abstract and I. Introduction

II. System Model

III. Problem Formulation

IV. Proposed Algorithm for Problem P0

V. Numerical Results

VI. Conclusion

APPENDIX A: PROOF OF LEMMA 1 and References

V. NUMERICAL RESULTS

In this section, extensive simulations are conducted to validate the effectiveness and the convergence of the proposed algorithm. To illustrate the advantages of the proposed algorithm, the following three benchmark schemes are compared.

\

  1. Benchmark I: B transmit signals with the average power and both 3D trajectory of B and user scheduling are jointly optimized based on the PLoS model, which is denoted by ‘NPC’.

    \

  2. Benchmark II: The 2D trajectory of B, the transmission power of B, and user scheduling are jointly optimized based on the LoS model, which is denoted by ‘2D-LoS’.

    \

  3. Benchmark III: B works with fixed vertical trajectory and its horizontal and transmission power of B, and user scheduling are jointly optimized based on the PLoS model, which is denoted by ‘2D-PLoS’.

\ TABLE II: List of Simulation Parameters.

\

\ Fig. 5: Simulation results with different schemes.

\

\ Figs. 4(a) and 4(b) provide the 3D trajectory of B with the different schemes and in the scenarios with different propulsion power limitations, respectively. From Fig. 4(a), it can be observed that compared with the scenarios with the 2D-PLoS scheme, B in the 2D-LoS scheme must keep away from D to meet IT constraints. This requirement for B to keep away from D in the 2D-LoS scheme is due to the exaggerated probability of LoS for the A2G link. The results in Fig. 4(b) show that different propulsion power limitation results in different vertical trajectories

\

\

\

\

VI. CONCLUSION

This work investigated the achievable rate of the underlay IoT system with an energy-constrained UAV under PLoS channels. The achievable rate of the considered systems was maximized by jointly considering the UAV’s 3D trajectory, transmission power, and user scheduling, which is a nonlinear mixed-integer non-convex problem. The lower bound of the average achievable rate was utilized and the original nonconvex problem was transformed into several solvable convex subproblems by using BCD and SCA techniques, and an efficient iterative algorithm was proposed. The numerical results not only verified the convergence and effectiveness of the algorithm but also illustrated the impact of propulsion power and interference thresholds on the average achievable rate

\

APPENDIX A

PROOF OF LEMMA 1

\

\ \ From the above Jacobian matrix, we can obtain the Hessian matrix of f(x, y) as

\ \

\ \ According to (33) and (34), for any given A ≥ 0, We can determine that the determinant of the cofactor matrix of the Hessian matrix of function f(x, y) is greater than or equal to 0. Therefore, the Hessian matrix of f(x, y) is a semi-positive definite matrix, so f(x, y) is a convex function.

\

REFERENCES

[1] Q. Wu, J. Xu, Y. Zeng, D. W. K. Ng, N. Al-Dhahir, R. Schober, and A. L. Swindlehurst, “A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 2912-2945, Oct. 2021.

\ [2] B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and beyond: recent advances and future trends,” IEEE Internet Things J., vol. 6, no. 2, pp. 2241-2263, Apr. 2019.

\ [3] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on UAV communications for 5G and beyond,” Proc. IEEE, vol. 107, no. 12, pp. 2327-2375, Dec. 2019.

\ [4] Q. Wu, L. Liu, and R. Zhang, “Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network,” IEEE Wireless Commun., vol. 26, no. 1, pp. 36-44, Feb. 2019.

\ [5] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109-2121, Mar. 2018.

\ [6] Z. Li, M. Chen, C. Pan, N. Huang, Z. Yang, and A. Nallanathan, “Joint trajectory and communication design for secure UAV networks,” IEEE Commun. Lett., vol. 23, no. 4, pp. 636-639, Apr. 2019.

\ [7] H. Fu, Z. Sheng, A. A. Nasir, A. H. Muqaibel, and L. Hanzo, “Securing the UAV-aided non-orthogonal downlink in the face of colluding eavesdroppers,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6837-6842, Jun. 2022.

\ [8] M. Cui, G. Zhang, Q. Wu, and D. W. K. Ng, “Robust trajectory and transmit power design for secure UAV communications,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 9042-9046, Sep. 2018.

\ [9] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3747-3760, Jun. 2017.

\ [10] S. Eom, H. Lee, J. Park, and I. Lee, “UAV-aided wireless communication designs with propulsion energy limitations,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 651-662, Jan. 2020.

\ [11] Y. Wu, W. Yang, X. Guan, and Q. Wu, “Energy-efficient trajectory design for UAV-enabled communication under malicious jamming,” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 206-210, Feb. 2021.

\ [12] J. Zhang, Y. Zeng, and R. Zhang, “Receding horizon optimization for energy-efficient UAV communication,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 490-494, Apr. 2020.

\ [13] A. Bejaoui, K.-H. Park, and M.-S. Alouini, “A QoS-oriented trajectory optimization in swarming unmanned-aerial-vehicles communications,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 791-794, Jun. 2020.

\ [14] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2329-2345, Apr. 2019.

\ [15] C. Zhan and H. Lai, “Energy minimization in internet-of-things system based on rotary-wing UAV,” IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1341-1344, Oct. 2019.

\ [16] B. Duo, Q. Wu, X. Yuan, and R. Zhang, “Energy efficiency maximization for full-duplex UAV secrecy communication,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4590-4595, Apr. 2020.

\ [17] R. Zhang, X. Pang, W. Lu, N. Zhao, Y. Chen, and D. Niyato, “Dual-UAV enabled secure data collection with propulsion limitation,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7445-7459, Nov. 2021.

\ [18] M. Li, X. Tao, N. Li, H. Wu, and J. Xu, “Secrecy energy efficiency maximization in UAV-enabled wireless sensor networks without eavesdropper’s CSI,” IEEE Internet Things J., vol. 9, no. 5, pp. 3346-3358, Mar. 2022.

\ [19] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569-572, Dec. 2014.

\ [20] B. Duo, H. Hu, Y. Li, and X. Yuan, “Joint trajectory and power design in probabilistic LoS channel for UAV-enabled cooperative jamming,” Proc. IEEE International Conference on Communications (ICC 2021), Montreal, QC, Canada, Jun. 2021, pp. 1-6.

\ [21] C. You and R. Zhang, “Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 3753-3768, Jun. 2020.

\ [22] B. Duo, Q. Wu, X. Yuan, and R. Zhang, “Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16288-16293, Dec. 2020.

\ [23] Z. Guan, S. Wang, L. Gao, and W. Xu, “Energy-efficient UAV communication with 3D trajectory optimization,” Proc. 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, Dec. 2021, pp. 312-317.

\ [24] A. Meng, X. Gao, Y. Zhao, and Z. Yang, “Three-dimensional trajectory optimization for energy-constrained UAV-enabled IoT system in probabilistic LoS channel,” IEEE Internet Things J., vol. 9, no. 2, pp. 1109- 1121, Jan. 2022.

\ \ [25] H. Lei, H. Ran, I. S. Ansari, K.-H. Park, G. Pan, and M.-S. Alouini, “DDPG-based aerial secure data collection,” IEEE Trans. Commun., doi: 10.1109/TCOMM.2024.3379417, 2024.

\ [26] Y. Saleem, M. H. Rehmani, and S. Zeadally, “Integration of cognitive radio technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges,” J. Netw. Comput. Appl., vol. 50, pp. 15- 31, Apr. 2015.

\ [27] H. Lei, H. Yang, K.-H. Park, I. S. Ansari, J. Jiang, and M.-S. Alouini, “Joint trajectory design and user scheduling for secure aerial underlay IoT systems,” IEEE Internet Things J., vol. 10, no. 15, pp. 13637-13648, Aug. 2023.

\ [28] H. Lei, J. Jiang, H. Yang, K.-H. Park, I. S. Ansari, G. Pan, and M.-S. Alouini. “Trajectory and power design for aerial CRNs with colluding eavesdroppers,” arXiv:2310.13931, Oct. 2023, [Online]: https://arxiv.org/abs/2310.13931

\ [29] P. X. Nguyen, V.-D. Nguyen, H. V. Nguyen, and O.-S. Shin, “UAVassisted secure communications in terrestrial cognitive radio networks: Joint power control and 3D trajectory optimization,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3298-3313, Apr. 2021.

\ [30] Z. Wang, F. Zhou, Y. Wang, and Q. Wu, “Joint 3D trajectory and resource optimization for a UAV relay-assisted cognitive radio network,” China Commun., vol. 18, no. 6, pp. 184-200, Jun. 2021.

\ [31] Y. Huang, W. Mei, J. Xu, L. Qiu, and R. Zhang, “Cognitive UAV communication via joint maneuver and power control,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7872-7888, Nov. 2019.

\ [32] Y. Jiang and J. Zhu, “Three-dimensional trajectory optimization for secure UAV-enabled cognitive communications,” China Commun., vol. 18, no. 12, pp. 285-296, Dec. 2021.

\ [33] Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4281- 4298, Jun. 2019.

\ [34] J. Yao and J. Xu, “Joint 3D maneuver and power adaptation for secure UAV communication with CoMP reception,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6992-7006, Oct. 2020.

\ [35] E. Tzoreff and A. J. Weiss, “Path design for best emitter location using two mobile sensors,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5249-5261, Oct. 2017.

\ [36] H. Xing, L. Liu, and R. Zhang, “Secrecy wireless information and power transfer in fading wiretap channel,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 180-190, Jan. 2016.

\ [37] T. Liu, M. Cui, G. Zhang, Q. Wu, X. Chu, and J. Zhang, “3D trajectory and transmit power optimization for UAV-enabled multi-link relaying systems,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 392- 405, Mar. 2021.

\ [38] S. Boyd and L. Vandenberghe, Convex Optimization: Cambridge Univ Press, 2004.

\ [39] A. Filippone, Flight Performance of Fixed and Rotary Wing Aircraft. Amsterdam, The Netherlands: Elsevier, 2006.

\

:::info Authors:

(1) Hongjiang Lei, School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (leihj@cqupt.edu.cn);

(2) Xiaqiu Wu, School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (cquptwxq@163.com);

(3) Ki-Hong Park, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (kihong.park@kaust.edu.sa);

(4) Gaofeng Pan, School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China (gaofeng.pan.cn@ieee.org).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Superstate Launches SEC‑Approved Tokenized Share Issuance on Ethereum and Solana

Superstate Launches SEC‑Approved Tokenized Share Issuance on Ethereum and Solana

Superstate introduced a new pathway that brings public equity issuance onto blockchain networks through a regulated structure. The firm now enables SEC-registered companies to sell new tokenized shares directly to investors on Ethereum and Solana. The move signals a shift toward faster capital formation as firms search for more efficient fundraising channels. Moreover, the development arrives as U.S. regulators accelerate experiments that merge traditional finance with blockchain infrastructure. Consequently, the launch positions Superstate at the center of efforts to modernize how public companies raise money and maintain shareholder records.Direct Issuance Targets Faster Funding and Instant SettlementThe Direct Issuance Program lets issuers receive capital in stablecoins while investors receive tokenized shares in real time. This structure allows companies to manage shareholder updates instantly through Superstate’s regulated transfer agent system. Additionally, the program supports existing share classes or new digital-only classes, giving companies more flexibility in how they engage investors.Superstate expects the first offerings to launch in 2026. The firm argues that companies need issuance rails that match global capital flows and deliver immediate settlement. Hence, the appeal of stablecoin-based transactions grows as markets demand more certainty and speed. The approach may also help smaller issuers reach investors who prefer blockchain-based assets with transparent lifecycle tracking.Regulators Accelerate Blockchain ExperimentsRegulators under the Trump administration encourage more crypto-financial innovation, which strengthens interest in tokenized securities. Both the SEC and CFTC now advance guidelines that reduce uncertainty around digital issuance. Moreover, large issuers and fintech firms continue to test onchain models that integrate with compliance tools and custodial systems.Earlier efforts by Galaxy and Sharplink involved tokenizing existing shares for onchain holding. However, those initiatives did not raise new capital. Superstate now extends that foundation by enabling primary issuance that interacts directly with blockchain liquidity.Programmable Securities Unlock New Use CasesTokenized shares issued through the program can include programmable features that update governance or distribution rules automatically. Besides, the digital structure allows integrations with onchain settlement, portfolio management, and institutional custody providers. These features may attract investors seeking assets that combine regulatory protection with efficient blockchain execution.Superstate intends to open its offering to both retail and institutional buyers after KYC checks. Consequently, the initiative may reshape how issuers approach capital formation and how investors access regulated digital securities.
Share
Coinstats2025/12/11 03:16
XRP triggert patroon dat voorafging aan eerdere 7000% stijging

XRP triggert patroon dat voorafging aan eerdere 7000% stijging

i Kennisgeving: Dit artikel bevat inzichten van onafhankelijke auteurs en valt buiten de redactionele verantwoordelijkheid van BitcoinMagazine.nl. De informatie is bedoeld ter educatie en reflectie. Dit is geen financieel advies. Doe zelf onderzoek voordat je financiële beslissingen neemt. Crypto is zeer volatiel er zitten kansen en risicos aan deze investering. Je kunt je inleg verliezen. XRP laat opnieuw hetzelfde koerspatroon zien dat in 2017 leidde tot een stijging van meer dan 7000%. De nieuwe vergelijking die rondgaat op X laat zien dat de huidige structuur bijna een-op-een lijkt op die van toen. Wanneer gaat Ripple stijgen en hoe serieus is deze technische setup? Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord Ripple koers toont dezelfde golven als in 2017 De grafieken van 2017 en nu lijken opvallend veel op elkaar. Je ziet dezelfde golfbewegingen, dezelfde rustfase en dezelfde neerwaartse afronding van de vierde golf. In 2017 volgde daarna de grote doorbraak. 🚨𝐁𝐑𝐄𝐀𝐊𝐈𝐍𝐆: 𝐗𝐑𝐏 𝐉𝐮𝐬𝐭 𝐄𝐧𝐭𝐞𝐫𝐞𝐝 𝐭𝐡𝐞 𝐒𝐚𝐦𝐞 𝐏𝐚𝐭𝐭𝐞𝐫𝐧 𝐭𝐡𝐚𝐭 𝐋𝐞𝐝 𝐭𝐨 𝐭𝐡𝐞 𝟕,𝟒𝟓𝟐% 𝐑𝐚𝐥𝐥𝐲 𝐢𝐧 𝟐𝟎𝟏𝟕 👀🔥 A new side-by-side chart shows XRP’s 𝟐𝟎𝟐𝟓 𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐢𝐬 𝐚𝐥𝐦𝐨𝐬𝐭 𝐢𝐝𝐞𝐧𝐭𝐢𝐜𝐚𝐥 𝐭𝐨 𝟐𝟎𝟏𝟕 — same… pic.twitter.com/14uIZQxRus — Diana (@InvestWithD) December 7, 2025 De Ripple koers laat nu precies dat punt zien. De steun rond de zone van ongeveer twee dollar blijft tot nu toe sterk. De weerstand rond $ 2,20 blijft hard, maar dat was in 2017 niet anders. Diana herkent het patroon meteen. Niet omdat het perfect moet zijn, maar omdat de structuur gelijk is. Lees ook ons artikel over Solana dat XRP provoceert met ‘589’ en illustratie — wat zit hierachter? Wanneer gaat Ripple stijgen? Alles draait op dit moment om de zone boven $ 2,20. Zolang XRP daar niet doorheen sluit met kracht, blijft de Ripple koers vlak. In de grafiek zie je dat elke poging om boven deze weerstand te komen snel wordt teruggeduwd. Dat maakt de beweging traag en voorzichtig. Steun en weerstand + EMA’s XRP koers – bron: TradingView De RSI staat neutraal. Dat betekent dat er ruimte is voor een stevige beweging zodra de koers richting de weerstand loopt. In 2017 brak die beweging pas los na weken van dezelfde zijwaartse fase. Het is dus geen zwakte, maar een periode waarin kopers en verkopers elkaar in evenwicht houden. Bekijk hier de Ripple koersverwachting voor de lange termijn. Praat mee op onze socials! Chat met onze experts via Telegram, geef je mening op Twitter of "sit back and relax" terwijl je naar onze YouTube-video's kijkt. Chat met ons Geef je mening Bekijk onze video's Ripple kopen blijft vooral een patroon spel Veel handelaren die nu Ripple kopen doen dat vanwege het patroon. Ze kijken minder naar het nieuws en meer naar de vergelijking met 2017. De grafiek laat namelijk zien dat XRP in beide jaren rond hetzelfde punt draaide voordat de grote stijging begon. Toch blijft de markt bewust rustig. De fundamentals zijn sterker dan in 2017, maar de Ripple koers laat dat nog niet zien. Dat maakt het patroon interessant, maar niet automatisch explosief. Het is vooral een technische reden om XRP strak in de gaten te houden. Voor de liefhebbers hebben we een lijst samengesteld met crypto’s die gaan stijgen naast XRP. Wat gaat de Ripple koers doen als de weerstand eindelijk breekt? De weerstand van $ 2,20 is het niveau dat alles kan openzetten. Komt er volume achter, dan kan XRP snel richting $ 3,00 – $ 3,50 bewegen. Pas boven die zone ontstaat ruimte voor een grotere stijging, vergelijkbaar met de verticale fase uit 2017. Zakt de Ripple koers onder de steun rond $ 2,00, dan duurt het langer voordat het patroon opnieuw kracht krijgt. De structuur blijft dan staan, maar de uitbraak schuift verder vooruit. Voor nu staat XRP precies op het punt waar de rally van 2017 ook begon. De grafiek klopt, het sentiment is voorzichtig positief en de markt wacht op de eerste candle die laat zien welke kant het opgaat. Nieuwe altcoin met snelgroeiende community Als het patroon van 2017 zich herhaalt, kan een XRP rally een algehele bull run ontketenen. In het verleden hebben we gezien dat memecoins zoals Dogecoin hier het meeste van profiteren. Dat maakt het een interessant moment om te kijken naar het laatste lid van de Doge familie met een snelgroeiende community. Maxi Doge ($MAXI) is het “bro gym” neefje van Dogecoin en zit vol met Red Bull, testosteron, pre-workout en 1000x leverage. Het is voor degenen die de eerste rally’s van DOGE, WIF en SHIB gemist hebben. Vroege investeerders kunnen nu al hun $MAXI tokens staken tegen het hoge jaarlijkse rendement van 72%. Hier is al massaal gebruik van gemaakt, want er staan al meer dan 10 miljard $MAXI tokens vast in het stakingsysteem. Je hebt nog even de tijd om je eerste $MAXI tokens te bemachtigen voor de huidige lage prijs. Bij elke nieuwe fase van de presale hoort namelijk een nieuwe prijsverhoging. Nu naar Maxi Doge i Kennisgeving: Dit artikel bevat inzichten van onafhankelijke auteurs en valt buiten de redactionele verantwoordelijkheid van BitcoinMagazine.nl. De informatie is bedoeld ter educatie en reflectie. Dit is geen financieel advies. Doe zelf onderzoek voordat je financiële beslissingen neemt. Crypto is zeer volatiel er zitten kansen en risicos aan deze investering. Je kunt je inleg verliezen. Het bericht XRP triggert patroon dat voorafging aan eerdere 7000% stijging is geschreven door Christiaan Kopershoek en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/12/11 03:16