This article introduces a practical error metric for approximating Euler spirals and parallel curves using arc segments. Unlike earlier methods requiring complex continuity constraints or high computational costs, this approach achieves near-optimal accuracy with much simpler formulas and constant subdivision density. By empirically refining curvature-based error estimates, it produces visually smooth, watertight renders with fewer segments—making it ideal for efficient digital stroking and curve rendering applications.This article introduces a practical error metric for approximating Euler spirals and parallel curves using arc segments. Unlike earlier methods requiring complex continuity constraints or high computational costs, this approach achieves near-optimal accuracy with much simpler formulas and constant subdivision density. By empirically refining curvature-based error estimates, it produces visually smooth, watertight renders with fewer segments—making it ideal for efficient digital stroking and curve rendering applications.

A Simpler Formula for Curve Approximation Using Arc Segments

2025/10/29 23:15

ABSTRACT

1 INTRODUCTION

2 FLATTENING AND ARC APPROXIMATION OF CURVES

3 EULER SPIRALS AND THEIR PARALLEL CURVES

4 FLATTENED PARALLEL CURVES

5 ERROR METRICS FOR APPROXIMATION BY ARCS

6 EVOLUTES

7 CONVERSION FROM CUBIC BÉZIERS TO EULER SPIRALS

8 GPU IMPLEMENTATION

9 RESULTS

CONCLUSIONS, FUTURE WORK AND REFERENCES

\

ERROR METRICS FOR APPROXIMATION BY ARCS

The problem of approximating a curve by a sequence of arc segments has extensive literature, but none of the published solutions are quite suitable for our application. The specific problem of approximating an Euler spiral by arcs is considered in Meek and Walton [2004] using a “cut then measure” adaptive subdivision scheme, but their solution has poor quality; it scales as 𝑂(1/𝑛 2 ), while 𝑂(1/𝑛 3 ) is attainable. The result was improved “slightly” by Narayan [2014].

\ The literature also contains optimal results, namely Maier [2014] and Nuntawisuttiwong and Dejdumrong [2021], but at considerable cost; both approaches claim 𝑂(𝑛 2 ) time complexity. The through-line for all these results is that they are solving a harder problem: adopting the constraint that the generated arc sequence is 𝐺 1 continuous. While desirable for many applications, this constraint is not needed for rendering a stroke outline.

\ Even with this constraint relaxed, the angle discontinuities of an arc approximation are tiny compared to flattening to lines. Our approach is based on a simple error metric, similar in flavor to the one for flattening to line segments. The details of the metric (in particular, tuning of constants) were obtained empirically, though we suspect that more rigorous analytic bounds could be obtained. In practice it works very well indeed; the best way to observe that is an interactive testing tool, which is provided in the supplemental materials.

The proposed error metric is as follows. The estimated distance error for a curve of length 𝑠ˆ is:

𝑑 ≈ 1 120 ∫ 𝑠ˆ 0 3 √︁ |𝜅 ′ (𝑠)|𝑑𝑠!3

For an Euler spiral segment, 𝜅 ′ (𝑠) is constant and thus this error metric becomes nearly trivial. With 𝑛 subdivisions, the estimated distance is simply 𝑠 3𝜅 ′ 120𝑛 3 . Solving for 𝑛, we get 𝑛 = 𝑠 3 √︃ |𝜅 ′ | 120𝑑 subdivisions, and those are divided evenly by arc length, as the subdivision density is constant across the curve, just as is the case for flattening arcs to lines. Remarkably, the approximation of an Euler spiral parallel curve by arc segments is almost as simple as that for Euler spirals to arcs.

\ As in flattening to lines, the parameter for the curve is the arc length of the originating Euler spiral. The subdivision density is then constant, and only a small tweak is needed to the formula for computing the number of subdivisions, taking into account the additional curvature variation from the offset by ℎ (the half line-width). The revised formula is:

𝑛 = 𝑠 3 √︂ |𝜅 ′ | (1 + 0.4|ℎ𝑠𝜅′ |) 120𝑑

This formula was determined empirically by curve-fitting measured error values from approximating Euler spiral parallel curves to arcs, but was also inspired by applying the general error metric formula to the analytical equations for Euler spiral parallel curve, and dropping higher order terms. A more rigorous derivation, ideally with firm error bounds, remains as future work.

\ One consequence of this formula is that, since the error is in terms of the absolute value of ℎ, independent of sign, the same arc approximation can be used for both sides of a stroke. See Figure 8 for a comparison between flattening to a polyline and approximation with arc segments. The arc segment version has many fewer segments at the same tolerance, while preserving very high visual quality.

EVOLUTES

In the principled, correct specification for stroking [19], parallel curves are sufficient only for segments in which the curvature

\ Figure 9: Weakly and strongly correct stroke outlines. The toprow shows weakly correct stroke outlines. In (a) the curvature does

\ does not exceed the reciprocal half-width. When it does, additional segments must be drawn, including evolutes of the original curve. In general, the evolute of a cubic Bézier is a very complex curve, requiring approximation techniques. By contrast, the evolute of an Euler spiral (𝜅 = 𝑎𝑠) is another spiral with a simple Cesàro equation, namely 𝜅 = −𝑎 −1 𝑠 −3 , an instance of the general result that the evolute of a log-aesthetic curve is another log-aesthetic curve [26].

\ Flattening this evolute is also straightforward; the subdivision density is proportional to 𝑠 −0.5 where 𝑠 is the arc length parameter of the underlying Euler spiral (and translated so 𝑠 = 0 is the inflection point). Thus, the integral is 2 √ 𝑠, and the inverse integral is just squaring. Thus, flattening the evolute of an Euler spiral is simpler than flattening its parallel curve. T

\ he effect of adding evolutes to achieve strong correctness is shown in Figure 9. The additional evolute segments and connecting lines are output twice, to make the winding numbers consistent and produce a watertight outline. All winding numbers are positive, so rendering with the nonzero winding rule yields a correct final render.

:::info Authors:

  1. Raph Levien
  2. Arman Uguray

:::

:::info This paper is available on arxiv under CC 4.0 license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab

The post Crypto-Fueled Rekt Drinks Sells 1 Millionth Can Amid MoonPay Collab appeared on BitcoinEthereumNews.com. In brief Rekt Brands sold its 1 millionth can of its Rekt Drinks flavored sparkling water. The Web3 firm collaborated with payments infrastructure company MoonPay on a peach-raspberry flavor called “Moon Crush.” Rekt incentivizes purchasers of its drinks with the REKT token, which hit an all-time high market cap of $583 million in August. Web3 consumer firm Rekt Brands sold its 1 millionth can of its Rekt Drinks sparkling water on Friday, surpassing its first major milestone with the sold-out drop of its “Moon Crush” flavor—a peach raspberry-flavored collaboration with payments infrastructure firm MoonPay.  The sale follows Rekt’s previous sellout collaborations with leading Web3 brands like Solana DeFi protocol Jupiter, Ethereum layer-2 network Abstract, and Coinbase’s layer-2 network, Base. Rekt has already worked with a number of crypto-native brands, but says it has been choosy when cultivating collabs. “We have received a large amount of incoming enquiries from some of crypto’s biggest brands, but it’s super important for us to be selective in order to maintain the premium feel of Rekt,” Rekt Brands co-founder and CEO Ovie Faruq told Decrypt.  (Disclosure: Ovie Faruq’s Canary Labs is an investor in DASTAN, the parent company of Decrypt.) “We look to work with brands who are able to form partnerships that we feel are truly strategic to Rekt’s goal of becoming one of the largest global beverage brands,” he added. In particular, Faruq highlighted MoonPay’s role as a “gateway” between non-crypto and crypto users as a reason the collaboration made “perfect sense.”  “We’re thrilled to bring something to life that is both delicious and deeply connected to the crypto community,” MoonPay President Keith Grossman told Decrypt.  Rekt Brands has been bridging the gap between Web3 and the real world with sales of its sparkling water since November 2024. In its first sale,…
Share
BitcoinEthereumNews2025/09/20 09:24