This article introduces a novel disk scrubbing framework powered by Mondrian Conformal Prediction (MCP) to optimize maintenance in data storage systems. The approach uses system and storage statistics — including SMART parameters, Background Media Scanning (BMS) data, and CPU/disk utilization metrics — to predict drive health and workload patterns. By turning these predictions into scrubbing frequencies and schedules, the system intelligently prioritizes drives that require attention, thereby reducing downtime, extending disk lifespan, and improving overall storage reliability.This article introduces a novel disk scrubbing framework powered by Mondrian Conformal Prediction (MCP) to optimize maintenance in data storage systems. The approach uses system and storage statistics — including SMART parameters, Background Media Scanning (BMS) data, and CPU/disk utilization metrics — to predict drive health and workload patterns. By turning these predictions into scrubbing frequencies and schedules, the system intelligently prioritizes drives that require attention, thereby reducing downtime, extending disk lifespan, and improving overall storage reliability.

Why Predictive AI Might Be the Future of Disk Hygiene

Abstract and 1. Introduction

  1. Motivation and design goals

  2. Related Work

  3. Conformal prediction

    4.1. Mondrian conformal prediction (MCP)

    4.2. Evaluation metrics

  4. Mondrian conformal prediction for Disk Scrubbing: our approach

    5.1. System and Storage statistics

    5.2. Which disk to scrub: Drive health predictor

    5.3. When to scrub: Workload predictor

  5. Experimental setting and 6.1. Open-source Baidu dataset

    6.2. Experimental results

  6. Discussion

    7.1. Optimal scheduling aspect

    7.2. Performance metrics and 7.3. Power saving from selective scrubbing

  7. Conclusion and References

5. Mondrian conformal prediction for Disk Scrubbing: our approach

In contrast to the conventional studies mentioned above, we propose a novel approach for disk drive scrubbing based on Mondrian conformal prediction to quantitatively assess the health status of disk drives and use it as a metric for selecting drives for scrubbing. Figure 1 shows a high-level overview of the proposed method.

\ Figure 1: Overall approach of Mondrian conformal disk drive scrubbing.

\ The proposed architecture consists of three subsystems. The first subsystem is responsible for collecting storage and system statistics, which includes retrieving disk drive data from the storage array, as well as capturing CPU and disk busy statuses. The second subsystem, referred to as the drive health predictor engine, predicts the health status of the drives. It uses MCP to output a set of ”No concern” drive disks, i.e. unhealthy/dying drives that can be flagged for manual diagnostics by experts (not discussed in this paper) or completely healthy drives that do not need any scrubbing, as well as a set of ”Concern” disks with assigned health scores based on the predictor’s confidence, which then are turned into scrubbing frequencies with the scrubbing frequency indicator. The underlying non-conformity score used is margin error function. The third subsystem is the workload predictor engine, which first predicts the resources’ utilization percentage by taking into account SAR logs[2], and then combine this result with the scrubbing frequencies in order to schedule when and how frequently disk drive scrubbing is performed. Finally, the scrubbing operation is triggered on the storage array based on the scrubbing cycle. In the following subsections, each component of the overall architecture is described in detail.

5.1. System and Storage statistics

The main components of this subsystem are:

\ • SMART: stands for Self-Monitoring, Analysis, and Reporting Technology, and refers to a set of predefined parameters provided by device manufacturers that offer insights into various aspects of a storage device’s performance, including temperature, error rates, reallocated sectors, and more. Each attribute has a threshold value assigned by the manufacturer, indicating the acceptable limit for that parameter. When a parameter exceeds its threshold value, it may indicate a potential issue with the storage device. We use SMART parameters as input features for the drive health predictor engine.

\ • BMS: stands for Background Media Scanning, and is a passive process that differs from disk scrubbing, which actively scans the disk for errors during idle periods without reading or writing data. BMS involves scanning the disk for errors in the background without interrupting normal operations. In our proposed architecture, we also extract this BMS feature, which is a numerical value for the number of times it encounters errors while performing a scan on the same drive, and feed it to the drive health predictor engine.

\ • Disk and CPU busy time: The performance of a drive is heavily dependent on its critical processes, such as data access and write speed. The numeric values range between 1 to 100 in terms of percentage and change over time with a sampling period of 1 hour. These system statistics are extracted from the SAR logs (standard logs for system utilization) and converted into time series data, which can then be used by the workload predictor engine.

\ \

:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::


[2] The System Activity Report is a command that provides information about different aspects of system performance. For example, data on CPU usage, memory and paging, interrupts, device workload, network activity, and swap space utilization


:::info Authors:

(1) Rahul Vishwakarma, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States (rahuldeo.vishwakarma01@student.csullb.edu);

(2) Jinha Hwang, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States (jinha.hwang01@student.csulb.edu);

(3) Soundouss Messoudi, HEUDIASYC - UMR CNRS 7253, Universit´e de Technologie de Compiegne, 57 avenue de Landshut, 60203 Compiegne Cedex - France (soundouss.messoudi@hds.utc.fr);

(4) Ava Hedayatipour, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States (ava.hedayatipour@csulb.edu).

:::

\

Market Opportunity
WHY Logo
WHY Price(WHY)
$0.00000001529
$0.00000001529$0.00000001529
0.00%
USD
WHY (WHY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

‘Love Island Games’ Season 2 Release Schedule—When Do New Episodes Come Out?

‘Love Island Games’ Season 2 Release Schedule—When Do New Episodes Come Out?

The post ‘Love Island Games’ Season 2 Release Schedule—When Do New Episodes Come Out? appeared on BitcoinEthereumNews.com. LOVE ISLAND GAMES — Episode 201 — Pictured: Ariana Madix — (Photo by: Ben Symons/PEACOCK via Getty Images) Ben Symons/PEACOCK via Getty Images We’ve got a text! It’s time for another season of Love Island Games. With fan-favorites returning in hopes of winning the $250,000 cash prize, read on to learn more about Love Island Games Season 2, including the release schedule so you don’t miss a second of drama. Love Island Games is a spinoff in the Love Island franchise that first premiered in 2023. The show follows a similar format to the original series, but with one major twist: all contestants are returning Islanders from previous seasons of Love Island from around the world, including the USA, UK, Australia and more. Another big difference is that games take on much more importance in Love Island Games than the mothership version, with the results “determining advantages, risks, and even who stays and who goes,” according to Peacock. Vanderpump Rules star Ariana Madix is taking over hosting duties for Love Island Games Season 2, replacing Love Island UK star Maya Jama who hosted the first season. Iain Stirling returns as the show’s narrator, while UK alum Maura Higgins will continue to host the Saturday show Love Island: Aftersun. ForbesWho’s In The ‘Love Island Games’ Season 2 Cast? Meet The IslandersBy Monica Mercuri Jack Fowler and Justine Ndiba were named the first-ever winners of Love Island Games in 2023. Justine had previously won Love Island USA Season 2 with Caleb Corprew, while Jack was a contestant on Love Island UK Season 4. In March 2024, Fowler announced on his Instagram story that he and Justine decided to remain “just friends.” The Season 2 premiere revealed the first couples of the season: Andrea Carmona and Charlie Georgios, Andreina Santos-Marte and Tyrique Hyde,…
Share
BitcoinEthereumNews2025/09/18 04:50
Tesla, Inc. (TSLA) Stock: Rises as Battery Cell Investment Expands at German Gigafactory

Tesla, Inc. (TSLA) Stock: Rises as Battery Cell Investment Expands at German Gigafactory

  TLDR TSLA trades near $485 after news of higher battery investment in Germany • Tesla targets up to 8 GWh of annual battery cell output by 2027 • Total cell factory
Share
Coincentral2025/12/17 04:37
Outseer Appoints Chief Revenue Officer to Lead Growing Global Sales Organization

Outseer Appoints Chief Revenue Officer to Lead Growing Global Sales Organization

LONDON–(BUSINESS WIRE)–Outseer, a global leader in all-cause digital fraud prevention for financial institutions, today announced the appointment of Shane Cumming
Share
AI Journal2025/12/17 04:47