Go offers composition through embedding, interfaces without explicit implementation, and clear rules for methods. The difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.Go offers composition through embedding, interfaces without explicit implementation, and clear rules for methods. The difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.

Clean Code in Go (Part 2): Structs, Methods, and Composition Over Inheritance

2025/11/10 04:06

This is the second article in my clean code series. You can read the first part here.

https://hackernoon.com/clean-code-functions-and-error-handling-in-go-from-chaos-to-clarity-part-1?embedable=true

Introduction: Why OOP in Go Isn't What You Think

I've seen hundreds of developers try to write Go like Java, creating inheritance hierarchies that don't exist and fighting the language every step of the way. "Go has no classes!" — the first shock for developers with Java/C# background. The second — "How to live without inheritance?!". Relax, Go offers something better: composition through embedding, interfaces without explicit implementation, and clear rules for methods.

Common struct/method mistakes I've observed:

  • Using value receivers with mutexes: ~25% cause data races
  • Mixing receiver types: ~35% of struct methods
  • Creating getters/setters for everything: ~60% of structs
  • Trying to implement inheritance: ~40% of new Go developers

After 6 years of working with Go, I can say: the difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.

Receivers: The Go Developer's Main Dilemma

Value vs Pointer Receiver

This is question #1 in interviews and code reviews. Here's a simple rule that covers 90% of cases:

// Value receiver - for immutable methods func (u User) FullName() string { return fmt.Sprintf("%s %s", u.FirstName, u.LastName) } // Pointer receiver - when changing state func (u *User) SetEmail(email string) error { if !isValidEmail(email) { return ErrInvalidEmail } u.Email = email u.UpdatedAt = time.Now() return nil }

Rules for Choosing a Receiver

type Account struct { ID string Balance decimal.Decimal mutex sync.RWMutex } // Rule 1: If even one method requires a pointer receiver, // ALL methods should use pointer receiver (consistency) // BAD: mixed receivers func (a Account) GetBalance() decimal.Decimal { // value receiver return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) { // pointer receiver a.Balance = a.Balance.Add(amount) } // GOOD: consistent receivers func (a *Account) GetBalance() decimal.Decimal { a.mutex.RLock() defer a.mutex.RUnlock() return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) error { if amount.LessThanOrEqual(decimal.Zero) { return ErrInvalidAmount } a.mutex.Lock() defer a.mutex.Unlock() a.Balance = a.Balance.Add(amount) return nil }

When to Use Pointer Receiver

  1. Method modifies state
  2. Struct contains mutex (otherwise it will be copied!)
  3. Large struct (avoid copying)
  4. Consistency (if at least one method requires pointer)

// Struct with mutex ALWAYS pointer receiver type Cache struct { data map[string]interface{} mu sync.RWMutex } // DANGEROUS: value receiver copies mutex! func (c Cache) Get(key string) interface{} { // BUG! c.mu.RLock() // Locking a COPY of mutex defer c.mu.RUnlock() return c.data[key] } // CORRECT: pointer receiver func (c *Cache) Get(key string) interface{} { c.mu.RLock() defer c.mu.RUnlock() return c.data[key] }

Constructors and Factory Functions

Go doesn't have constructors in the classical sense, but there's the New* idiom:

// BAD: direct struct creation func main() { user := &User{ ID: generateID(), // What if we forget? Email: "test@test.com", // CreatedAt not set! } } // GOOD: factory function guarantees initialization func NewUser(email string) (*User, error) { if !isValidEmail(email) { return nil, ErrInvalidEmail } return &User{ ID: generateID(), Email: email, CreatedAt: time.Now(), UpdatedAt: time.Now(), }, nil }

Functional Options Pattern

For structs with many optional parameters:

type Server struct { host string port int timeout time.Duration maxConns int tls *tls.Config } // Option - function that modifies Server type Option func(*Server) // Factory functions for options func WithTimeout(timeout time.Duration) Option { return func(s *Server) { s.timeout = timeout } } func WithTLS(config *tls.Config) Option { return func(s *Server) { s.tls = config } } func WithMaxConnections(max int) Option { return func(s *Server) { s.maxConns = max } } // Constructor accepts required parameters and options func NewServer(host string, port int, opts ...Option) *Server { server := &Server{ host: host, port: port, timeout: 30 * time.Second, // defaults maxConns: 100, } // Apply options for _, opt := range opts { opt(server) } return server } // Usage - reads like prose server := NewServer("localhost", 8080, WithTimeout(60*time.Second), WithMaxConnections(1000), WithTLS(tlsConfig), )

Encapsulation Through Naming

Go has no private/public keywords. Instead — the case of the first letter:

type User struct { ID string // Public field (Exported) Email string password string // Private field (Unexported) createdAt time.Time // Private } // Public method func (u *User) SetPassword(pwd string) error { if len(pwd) < 8 { return ErrWeakPassword } hashed, err := bcrypt.GenerateFromPassword([]byte(pwd), bcrypt.DefaultCost) if err != nil { return fmt.Errorf("hash password: %w", err) } u.password = string(hashed) return nil } // Private helper func (u *User) validatePassword(pwd string) error { return bcrypt.CompareHashAndPassword([]byte(u.password), []byte(pwd)) } // Public method uses private one func (u *User) Authenticate(pwd string) error { if err := u.validatePassword(pwd); err != nil { return ErrInvalidCredentials } return nil }

Composition Through Embedding

Instead of inheritance, Go offers embedding. This is NOT inheritance, it's composition:

// Base struct type Person struct { FirstName string LastName string BirthDate time.Time } func (p Person) FullName() string { return fmt.Sprintf("%s %s", p.FirstName, p.LastName) } func (p Person) Age() int { return int(time.Since(p.BirthDate).Hours() / 24 / 365) } // Employee embeds Person type Employee struct { Person // Embedding - NOT inheritance! EmployeeID string Department string Salary decimal.Decimal } // Employee can override Person's methods func (e Employee) FullName() string { return fmt.Sprintf("%s (%s)", e.Person.FullName(), e.EmployeeID) } // Usage emp := Employee{ Person: Person{ FirstName: "John", LastName: "Doe", BirthDate: time.Date(1990, 1, 1, 0, 0, 0, 0, time.UTC), }, EmployeeID: "EMP001", Department: "Engineering", } fmt.Println(emp.FullName()) // John Doe (EMP001) - overridden method fmt.Println(emp.Age()) // 34 - method from Person fmt.Println(emp.FirstName) // John - field from Person

Embedding Interfaces

type Reader interface { Read([]byte) (int, error) } type Writer interface { Write([]byte) (int, error) } // ReadWriter embeds both interfaces type ReadWriter interface { Reader Writer } // Struct can embed interfaces for delegation type LoggedWriter struct { Writer // Embed interface logger *log.Logger } func (w LoggedWriter) Write(p []byte) (n int, err error) { n, err = w.Writer.Write(p) // Delegate to embedded Writer w.logger.Printf("Wrote %d bytes, err: %v", n, err) return n, err } // Usage var buf bytes.Buffer logged := LoggedWriter{ Writer: &buf, logger: log.New(os.Stdout, "WRITE: ", log.LstdFlags), } logged.Write([]byte("Hello, World!"))

Method Chaining (Builder Pattern)

type QueryBuilder struct { table string columns []string where []string orderBy string limit int } // Each method returns *QueryBuilder for chaining func NewQuery(table string) *QueryBuilder { return &QueryBuilder{ table: table, columns: []string{"*"}, } } func (q *QueryBuilder) Select(columns ...string) *QueryBuilder { q.columns = columns return q } func (q *QueryBuilder) Where(condition string) *QueryBuilder { q.where = append(q.where, condition) return q } func (q *QueryBuilder) OrderBy(column string) *QueryBuilder { q.orderBy = column return q } func (q *QueryBuilder) Limit(n int) *QueryBuilder { q.limit = n return q } func (q *QueryBuilder) Build() string { query := fmt.Sprintf("SELECT %s FROM %s", strings.Join(q.columns, ", "), q.table) if len(q.where) > 0 { query += " WHERE " + strings.Join(q.where, " AND ") } if q.orderBy != "" { query += " ORDER BY " + q.orderBy } if q.limit > 0 { query += fmt.Sprintf(" LIMIT %d", q.limit) } return query } // Usage - reads like SQL query := NewQuery("users"). Select("id", "name", "email"). Where("active = true"). Where("created_at > '2024-01-01'"). OrderBy("created_at DESC"). Limit(10). Build() // SELECT id, name, email FROM users WHERE active = true AND created_at > '2024-01-01' ORDER BY created_at DESC LIMIT 10

Thread-Safe Structs

// BAD: race condition type Counter struct { value int } func (c *Counter) Inc() { c.value++ // Race when accessed concurrently! } // GOOD: protected with mutex type SafeCounter struct { mu sync.Mutex value int } func (c *SafeCounter) Inc() { c.mu.Lock() defer c.mu.Unlock() c.value++ } func (c *SafeCounter) Value() int { c.mu.Lock() defer c.mu.Unlock() return c.value } // EVEN BETTER: using atomic type AtomicCounter struct { value atomic.Int64 } func (c *AtomicCounter) Inc() { c.value.Add(1) } func (c *AtomicCounter) Value() int64 { return c.value.Load() }

Anti-patterns and How to Avoid Them

1. Getters/Setters for All Fields

// BAD: Java-style getters/setters type User struct { name string age int } func (u *User) GetName() string { return u.name } func (u *User) SetName(name string) { u.name = name } func (u *User) GetAge() int { return u.age } func (u *User) SetAge(age int) { u.age = age } // GOOD: export fields or use methods with logic type User struct { Name string age int // private because validation needed } func (u *User) SetAge(age int) error { if age < 0 || age > 150 { return ErrInvalidAge } u.age = age return nil } func (u *User) Age() int { return u.age }

2. Huge Structs

// BAD: God Object type Application struct { Config Config Database *sql.DB Cache *redis.Client HTTPServer *http.Server GRPCServer *grpc.Server Logger *log.Logger Metrics *prometheus.Registry // ... 20 more fields } // GOOD: separation of concerns type App struct { config *Config services *Services servers *Servers } type Services struct { DB Database Cache Cache Auth Authenticator } type Servers struct { HTTP *HTTPServer GRPC *GRPCServer }

Practical Tips

  1. Always use constructors for structs with invariants
  2. Be consistent with receivers within a type
  3. Prefer composition over inheritance (which doesn't exist)
  4. Embedding is not inheritance, it's delegation
  5. Protect concurrent access with a mutex or channels
  6. Don't create getters/setters without necessity

Struct and Method Checklist

  • Constructor New* for complex initialization
  • Consistent receivers (all pointer or all value)
  • Pointer receiver for structs with a mutex
  • Private fields for encapsulation
  • Embedding instead of inheritance
  • Thread-safety when needed
  • Minimal getters/setters

Conclusion

Structs and methods in Go are an exercise in simplicity. No classes? Great, less complexity. No inheritance? Perfect, the composition is clearer. The key is not to drag patterns from other languages but to use Go idioms.

In the next article, we'll dive into interfaces — the real magic of Go. We'll discuss why small interfaces are better than large ones, what interface satisfaction means, and why "Accept interfaces, return structs" is the golden rule.

How do you handle the transition from OOP languages to Go's composition model? What patterns helped you the most? Share your experience in the comments!

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

SEC issues investor guide on crypto wallets and custody risks

SEC issues investor guide on crypto wallets and custody risks

The SEC released a guide on crypto wallets and custody for investors.
Paylaş
Cryptopolitan2025/12/14 08:38
UK Looks to US to Adopt More Crypto-Friendly Approach

UK Looks to US to Adopt More Crypto-Friendly Approach

The post UK Looks to US to Adopt More Crypto-Friendly Approach appeared on BitcoinEthereumNews.com. The UK and US are reportedly preparing to deepen cooperation on digital assets, with Britain looking to copy the Trump administration’s crypto-friendly stance in a bid to boost innovation.  UK Chancellor Rachel Reeves and US Treasury Secretary Scott Bessent discussed on Tuesday how the two nations could strengthen their coordination on crypto, the Financial Times reported on Tuesday, citing people familiar with the matter.  The discussions also involved representatives from crypto companies, including Coinbase, Circle Internet Group and Ripple, with executives from the Bank of America, Barclays and Citi also attending, according to the report. The agreement was made “last-minute” after crypto advocacy groups urged the UK government on Thursday to adopt a more open stance toward the industry, claiming its cautious approach to the sector has left the country lagging in innovation and policy.  Source: Rachel Reeves Deal to include stablecoins, look to unlock adoption Any deal between the countries is likely to include stablecoins, the Financial Times reported, an area of crypto that US President Donald Trump made a policy priority and in which his family has significant business interests. The Financial Times reported on Monday that UK crypto advocacy groups also slammed the Bank of England’s proposal to limit individual stablecoin holdings to between 10,000 British pounds ($13,650) and 20,000 pounds ($27,300), claiming it would be difficult and expensive to implement. UK banks appear to have slowed adoption too, with around 40% of 2,000 recently surveyed crypto investors saying that their banks had either blocked or delayed a payment to a crypto provider.  Many of these actions have been linked to concerns over volatility, fraud and scams. The UK has made some progress on crypto regulation recently, proposing a framework in May that would see crypto exchanges, dealers, and agents treated similarly to traditional finance firms, with…
Paylaş
BitcoinEthereumNews2025/09/18 02:21