In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.

Decentralized AI: what it is, how it works, and why it will be central to the intelligence economy

2025/12/03 17:47
Okuma süresi: 5 dk
decentralized ai deai

In the report “State of AI 2025”, Messari dedicates an entire chapter to Decentralized AI (deAI), defining it not as an ideological alternative to traditional AI, but as a necessary complement to ensure transparency, security, and global participation.

In a world where models become black boxes and the power of private labs grows, the role of deAI is not theoretical: it is a structural response to the challenges of the new order of intelligence.

Artificial intelligence is becoming the most strategic digital infrastructure on the planet. However, as tech giants consolidate their dominance, a parallel movement is emerging that aims to build a radically different AI: open, verifiable, permissionless, and distributed.

What is Decentralized AI (deAI)?

The deAI is an AI system built on distributed networks, where:

  • data can be collected, labeled, and exchanged in a permissionless manner;
  • the computation is performed on global networks of independent GPUs;
  • the models can be trained and used in a coordinated manner, without a single controlling authority;
  • privacy, verifiability, and reputation are ensured through blockchain, cryptography, and attestation systems;
  • AI agents can transact, identify themselves, and collaborate in a trustless environment.

In other words:

DeAI is the infrastructure that enables the creation of an open AI “for anyone and by anyone,” without having to rely on a private giant.

Why does deAI become necessary?

Messari divides the reasons into two categories: philosophical and practical.

🔹 Philosophy

  1. Concentration of Power
    Centralized AI grants enormous control to a few companies (OpenAI, Google, Anthropic). This influences narratives, data access, technological standards, and even social processes.
  2. Opacity
    We do not know how the models were trained, what data they use, or what biases they incorporate.
  3. Limited trust
    There are no verifiable guarantees that the model provided is as claimed or that it processes data correctly.

🔹 Practice

  1. Global Coordination
    Blockchains enable the coordination of millions of devices and contributors without the need for trust.
  2. On-chain Verifiability
    Identity, reputation, model status, and integrity can be recorded immutably.
  3. Native Payments
    AI agents require instant payments, microtransactions, and immediate settlement: here, crypto is indispensable.
  4. Scalability through distributed networks
    deAI leverages existing hardware (gaming PCs, edge devices, small data centers), not just hyperscaler GPUs.

The deAI Stack: The 6 Layers Comprising the Ecosystem

The report details the technological stack of deAI, consisting of 6 interconnected layers: Data → Compute → Training → Privacy/Verification → Agents → Applications.

Let’s examine them one by one.

1. Data Layer

The heart of every AI system is the dataset.
In deAI, data is collected, labeled, stored, and exchanged through distributed networks.

Main activities:

  • data collection (video, audio, sensors, real interactions)
  • labeling through incentivized marketplaces
  • cleaning & preprocessing
  • storage on distributed networks (Filecoin, Arweave, Jackal)
  • data marketplaces (Ocean, Vana, Cudis)

Decentralization allows:

  • greater data diversity
  • direct financial incentives to contributors
  • verifiability (provenance, timestamp, identity)
  • reduction in the cost of proprietary datasets

With the “data famine” anticipated by 2030, this layer becomes crucial.

2. Compute Layer

This is where the most expensive part of AI takes place: performing training and inference.

Decentralized Compute Networks (DCN):

  • Akash
  • Render
  • io.net
  • Aethir
  • Hyperbolic
  • EigenCloud
  • Exabits

The main advantage: they make on-demand compute available at market prices, not dictated by a cloud provider.

Historically ineffective for large-scale training (due to latencies and synchronizations), today DCNs are perfect for serving inference, because:

  • requires less communication between GPUs
  • can be executed on heterogeneous hardware
  • is the segment expected to represent 50–75% of the compute demand by 2030

3. Training & Inference Layer

Messari makes a clear distinction:

Pre-training

Extremely difficult to decentralize:
requires enormous datasets, tight synchronization, and extremely high bandwidth.

Post-training (SFT / RLHF / RL)

Perfect for distributed networks:

  • more asynchrony
  • less communication
  • more scalability
  • possibility of data crowdsourcing

Decentralized Inference

It is the missing link that makes deAI usable in real life.

Examples cited in the report:

  • Prodia
  • Declines
  • Fortytwo Network
  • dria
  • inference.net

4. Privacy & Verification Layer

This is where the most complex cryptographic technologies come into play.

Fundamental Techniques:

  • ZKML (zero-knowledge machine learning)
  • Optimistic ML (verification through challenge period)
  • TEE-based ML (trusted execution environments)
  • FHE (fully homomorphic encryption)
  • MPC (multi-party computation)
  • Federated learning

Objective:

Ensure that a model has been calculated correctly, without modifications and without exposing sensitive data.

Mentioned projects:

  • Phala (TEE)
  • Zama (FHE)
  • Nillion (MPC)
  • EZKL (ZKML)
  • Lagrange (zkML + verification infra)

This is the most important layer for enterprise adoption.

5. Agents & Orchestration Layer

The report analyzes how autonomous agents are becoming the new “interface” of AI.

A full stack includes:

  • base model (LLM or SLM)
  • tooling (API, wallet, browser automation)
  • framework (ElizaOS, Daydreams, Olas, Questflow)
  • communication standards
  • multi-agent coordination
  • verifiable integrity (tamper-proof prompt, verified reasoning)

Blockchains unlock for agents:

  • identity
  • reputation
  • self-custodial payments
  • trustless access to financial services
  • auditability

Agents will be the primary “users” of blockchain in the next 5 years.

6. Applications Layer

The final level: apps built on the entire stack.

Examples:

  • trading agents
  • autonomous DeFi bots
  • autonomous browsers
  • cybersecurity systems
  • AI-powered data labeling
  • multi-agent universes for gaming, discovery, or e-commerce
  • decentralized recommendation engines

deAI apps function like regular AI, but with three differences:

  1. transparency
  2. verifiability
  3. interoperability with crypto

Why Now? The 5 Forces Driving deAI

Messari identifies five megatrends that create a perfect environment for the growth of decentralized AI:

  1. Inference Demand in Vertical Boom
  2. Depletion of Public Data and Demand for Proprietary Data
  3. Explosion of AI agents that must transact autonomously
  4. Global War for Talent and Prohibitive Compute Costs
  5. Advancements in the Decentralization of Training and Verification

Centralized AI cannot meet all needs: complementarity is required.

Conclusion: deAI is the Foundation of Open, Verifiable, and Participatory AI

Decentralized AI is not a trend: it is a structural response.
As models grow and the power of Big Tech concentrates, the need to:

  • verify
  • decentralize
  • certify
  • coordinate
  • offset
  • protect
  • distribute

becomes central.

DeAI is the infrastructure that enables AI to be not only powerful, but also:

  • open
  • secure
  • distributed
  • globally accessible
Piyasa Fırsatı
null Logosu
null Fiyatı(null)
--
----
USD
null (null) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security

Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security

BitcoinWorld Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security Ever wondered why withdrawing your staked Ethereum (ETH) isn’t an instant process? It’s a question that often sparks debate within the crypto community. Ethereum founder Vitalik Buterin recently stepped forward to defend the network’s approximately 45-day ETH unstaking period, asserting its crucial role in safeguarding the network’s integrity. This lengthy waiting time, while sometimes seen as an inconvenience, is a deliberate design choice with profound implications for security. Why is the ETH Unstaking Period a Vital Security Measure? Vitalik Buterin’s defense comes amidst comparisons to other networks, like Solana, which boast significantly shorter unstaking times. He drew a compelling parallel to military operations, explaining that an army cannot function effectively if its soldiers can simply abandon their posts at a moment’s notice. Similarly, a blockchain network requires a stable and committed validator set to maintain its security. The current ETH unstaking period isn’t merely an arbitrary delay. It acts as a critical buffer, providing the network with sufficient time to detect and respond to potential malicious activities. If validators could instantly exit, it would open doors for sophisticated attacks, jeopardizing the entire system. Currently, Ethereum boasts over one million active validators, collectively staking approximately 35.6 million ETH, representing about 30% of the total supply. This massive commitment underpins the network’s robust security model, and the unstaking period helps preserve this stability. Network Security: Ethereum’s Paramount Concern A shorter ETH unstaking period might seem appealing for liquidity, but it introduces significant risks. Imagine a scenario where a large number of validators, potentially colluding, could quickly withdraw their stake after committing a malicious act. Without a substantial delay, the network would have limited time to penalize them or mitigate the damage. This “exit queue” mechanism is designed to prevent sudden validator exodus, which could lead to: Reduced decentralization: A rapid drop in active validators could concentrate power among fewer participants. Increased vulnerability to attacks: A smaller, less stable validator set is easier to compromise. Network instability: Frequent and unpredictable changes in validator numbers can lead to performance issues and consensus failures. Therefore, the extended period is not a bug; it’s a feature. It’s a calculated trade-off between immediate liquidity for stakers and the foundational security of the entire Ethereum ecosystem. Ethereum vs. Solana: Different Approaches to Unstaking When discussing the ETH unstaking period, many point to networks like Solana, which offers a much quicker two-day unstaking process. While this might seem like an advantage for stakers seeking rapid access to their funds, it reflects fundamental differences in network architecture and security philosophies. Solana’s design prioritizes speed and immediate liquidity, often relying on different consensus mechanisms and validator economics to manage security risks. Ethereum, on the other hand, with its proof-of-stake evolution from proof-of-work, has adopted a more cautious approach to ensure its transition and long-term stability are uncompromised. Each network makes design choices based on its unique goals and threat models. Ethereum’s substantial value and its role as a foundational layer for countless dApps necessitate an extremely robust security posture, making the current unstaking duration a deliberate and necessary component. What Does the ETH Unstaking Period Mean for Stakers? For individuals and institutions staking ETH, understanding the ETH unstaking period is crucial for managing expectations and investment strategies. It means that while staking offers attractive rewards, it also comes with a commitment to the network’s long-term health. Here are key considerations for stakers: Liquidity Planning: Stakers should view their staked ETH as a longer-term commitment, not immediately liquid capital. Risk Management: The delay inherently reduces the ability to react quickly to market volatility with staked assets. Network Contribution: By participating, stakers contribute directly to the security and decentralization of Ethereum, reinforcing its value proposition. While the current waiting period may not be “optimal” in every sense, as Buterin acknowledged, simply shortening it without addressing the underlying security implications would be a dangerous gamble for the network’s reliability. In conclusion, Vitalik Buterin’s defense of the lengthy ETH unstaking period underscores a fundamental principle: network security cannot be compromised for the sake of convenience. It is a vital mechanism that protects Ethereum’s integrity, ensuring its stability and trustworthiness as a leading blockchain platform. This deliberate design choice, while requiring patience from stakers, ultimately fortifies the entire ecosystem against potential threats, paving the way for a more secure and reliable decentralized future. Frequently Asked Questions (FAQs) Q1: What is the main reason for Ethereum’s long unstaking period? A1: The primary reason is network security. A lengthy ETH unstaking period prevents malicious actors from quickly withdrawing their stake after an attack, giving the network time to detect and penalize them, thus maintaining stability and integrity. Q2: How long is the current ETH unstaking period? A2: The current ETH unstaking period is approximately 45 days. This duration can fluctuate based on network conditions and the number of validators in the exit queue. Q3: How does Ethereum’s unstaking period compare to other blockchains? A3: Ethereum’s unstaking period is notably longer than some other networks, such as Solana, which has a two-day period. This difference reflects varying network architectures and security priorities. Q4: Does the unstaking period affect ETH stakers? A4: Yes, it means stakers need to plan their liquidity carefully, as their staked ETH is not immediately accessible. It encourages a longer-term commitment to the network, aligning staker interests with Ethereum’s stability. Q5: Could the ETH unstaking period be shortened in the future? A5: While Vitalik Buterin acknowledged the current period might not be “optimal,” any significant shortening would likely require extensive research and network upgrades to ensure security isn’t compromised. For now, the focus remains on maintaining robust network defenses. Found this article insightful? Share it with your friends and fellow crypto enthusiasts on social media to spread awareness about the critical role of the ETH unstaking period in Ethereum’s security! To learn more about the latest Ethereum trends, explore our article on key developments shaping Ethereum’s institutional adoption. This post Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security first appeared on BitcoinWorld.
Paylaş
Coinstats2025/09/18 15:30
XRP holders hit new high, but THIS keeps pressure on price

XRP holders hit new high, but THIS keeps pressure on price

The post XRP holders hit new high, but THIS keeps pressure on price appeared on BitcoinEthereumNews.com. Ripple [XRP] remains one of the top five cryptocurrencies
Paylaş
BitcoinEthereumNews2026/02/17 08:49
Will Bitcoin Price Drop to $50,000 by March 2026?

Will Bitcoin Price Drop to $50,000 by March 2026?

The post Will Bitcoin Price Drop to $50,000 by March 2026? appeared on BitcoinEthereumNews.com. Bitcoin is trading around $68,700, down nearly 22% year to date
Paylaş
BitcoinEthereumNews2026/02/17 08:59