Support Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features. Less is known when moving to statistical learning onSupport Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features. Less is known when moving to statistical learning on

Hyperbolic SVM vs. Euclidean SVM: Comparing Optimization Challenges

Abstract and 1. Introduction

  1. Related Works

  2. Convex Relaxation Techniques for Hyperbolic SVMs

    3.1 Preliminaries

    3.2 Original Formulation of the HSVM

    3.3 Semidefinite Formulation

    3.4 Moment-Sum-of-Squares Relaxation

  3. Experiments

    4.1 Synthetic Dataset

    4.2 Real Dataset

  4. Discussions, Acknowledgements, and References

    \

A. Proofs

B. Solution Extraction in Relaxed Formulation

C. On Moment Sum-of-Squares Relaxation Hierarchy

D. Platt Scaling [31]

E. Detailed Experimental Results

F. Robust Hyperbolic Support Vector Machine

2 Related Works

Support Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features [10]. This convex quadratic optimization problem aims to find a linear separator that classifies samples of different labels and has the largest margin to data samples. The problem can be efficiently solved through coordinate descent or Lagrangian dual with sequential minimal optimization (SMO) [11] in the kernelized regime. Mature open source implementations exist such as LIBLINEAR [12] for the former and LIBSVM [13] for the latter.

\ Less is known when moving to statistical learning on non-Euclidean spaces, such as hyperbolic spaces. The popular practice is to directly apply neural networks in both obtaining the hyperbolic embeddings and perform inferences, such as classification, on these embeddings [2, 3, 14–20]. Recently, rising attention has been paid on transferring standard Euclidean statistical learning techniques, such as SVMs, to hyperbolic embeddings for both benchmarking neural net performances and developing better understanding of inherent data structures [4–7]. Learning a large-margin solution on hyperbolic space, however, involves a non-convex constrained optimization problem. Cho et al. [4] propose and solve the hyperbolic support vector machine problem using projected gradient descent; Weber et al. [7] add adversarial training to gradient descent for better generalizability; Chien et al. [5] propose applying Euclidean SVM to features projected to the tangent space of a heuristically-searched point to bypass PGD; Mishne et al. [6] reparametrize parameters and features back to Euclidean space to make the problem nonconvex and perform normal gradient descent. All these attempts are, however, gradient-descent-based algorithms, which are sensitive to initialization, hyperparameters, and class imbalances, and can provably converge to a local minimum without a global optimality guarantee.

\ Another relevant line of research focuses on providing efficient convex relaxations for various optimization problems, such as using semidefinite relaxation [8] for QCQP and moment-sum-ofsquares [21] for polynomial optimization problems. The flagship applications of SDP includes efficiently solving the max-cut problem on graphs [22] and more recently in machine learning tasks such as rotation synchronization in computer vision [23], robotics [24], and medical imaging [25]. Some results on the tightness of SDP have been analyzed on a per-problem basis [26–28]. On the other hand, moment-sum-of-squares relaxation, originated from algebraic geometry [21, 29], has been studied extensively from a theoretical perspective and has been applied for certifying positivity of functions in a bounded domain [30]. Synthesizing the work done in the control and algebraic geometry literature and geometric machine learning works is under-explored.

\

:::info Authors:

(1) Sheng Yang, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA (shengyang@g.harvard.edu);

(2) Peihan Liu, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA (peihanliu@fas.harvard.edu);

(3) Cengiz Pehlevan, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Center for Brain Science, Harvard University, Cambridge, MA, and Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA (cpehlevan@seas.harvard.edu).

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Market Opportunity
SolanaVM Logo
SolanaVM Price(SVM)
$0.00027843
$0.00027843$0.00027843
-1.22%
USD
SolanaVM (SVM) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

The post Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment? appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 17:39 Is dogecoin really fading? As traders hunt the best crypto to buy now and weigh 2025 picks, Dogecoin (DOGE) still owns the meme coin spotlight, yet upside looks capped, today’s Dogecoin price prediction says as much. Attention is shifting to projects that blend culture with real on-chain tools. Buyers searching “best crypto to buy now” want shipped products, audits, and transparent tokenomics. That frames the true matchup: dogecoin vs. Pepeto. Enter Pepeto (PEPETO), an Ethereum-based memecoin with working rails: PepetoSwap, a zero-fee DEX, plus Pepeto Bridge for smooth cross-chain moves. By fusing story with tools people can use now, and speaking directly to crypto presale 2025 demand, Pepeto puts utility, clarity, and distribution in front. In a market where legacy meme coin leaders risk drifting on sentiment, Pepeto’s execution gives it a real seat in the “best crypto to buy now” debate. First, a quick look at why dogecoin may be losing altitude. Dogecoin Price Prediction: Is Doge Really Fading? Remember when dogecoin made crypto feel simple? In 2013, DOGE turned a meme into money and a loose forum into a movement. A decade on, the nonstop momentum has cooled; the backdrop is different, and the market is far more selective. With DOGE circling ~$0.268, the tape reads bearish-to-neutral for the next few weeks: hold the $0.26 shelf on daily closes and expect choppy range-trading toward $0.29–$0.30 where rallies keep stalling; lose $0.26 decisively and momentum often bleeds into $0.245 with risk of a deeper probe toward $0.22–$0.21; reclaim $0.30 on a clean daily close and the downside bias is likely neutralized, opening room for a squeeze into the low-$0.30s. Source: CoinMarketcap / TradingView Beyond the dogecoin price prediction, DOGE still centers on payments and lacks native smart contracts; ZK-proof verification is proposed,…
Share
BitcoinEthereumNews2025/09/18 00:14
Prediction markets downplay Powell exit risk despite DOJ probe: Asia Morning Briefing

Prediction markets downplay Powell exit risk despite DOJ probe: Asia Morning Briefing

Traders on Polymarket and Kalshi are shrugging off the idea that a criminal investigation into the chair of the Federal Reserve would have him removed from his
Share
Coinstats2026/01/12 10:18
IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

The post IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge! appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 18:00 Discover why BlockDAG’s upcoming Awakening Testnet launch makes it the best crypto to buy today as Story (IP) price jumps to $11.75 and Hyperliquid hits new highs. Recent crypto market numbers show strength but also some limits. The Story (IP) price jump has been sharp, fueled by big buybacks and speculation, yet critics point out that revenue still lags far behind its valuation. The Hyperliquid (HYPE) price looks solid around the mid-$50s after a new all-time high, but questions remain about sustainability once the hype around USDH proposals cools down. So the obvious question is: why chase coins that are either stretched thin or at risk of retracing when you could back a network that’s already proving itself on the ground? That’s where BlockDAG comes in. While other chains are stuck dealing with validator congestion or outages, BlockDAG’s upcoming Awakening Testnet will be stress-testing its EVM-compatible smart chain with real miners before listing. For anyone looking for the best crypto coin to buy, the choice between waiting on fixes or joining live progress feels like an easy one. BlockDAG: Smart Chain Running Before Launch Ethereum continues to wrestle with gas congestion, and Solana is still known for network freezes, yet BlockDAG is already showing a different picture. Its upcoming Awakening Testnet, set to launch on September 25, isn’t just a demo; it’s a live rollout where the chain’s base protocols are being stress-tested with miners connected globally. EVM compatibility is active, account abstraction is built in, and tools like updated vesting contracts and Stratum integration are already functional. Instead of waiting for fixes like other networks, BlockDAG is proving its infrastructure in real time. What makes this even more important is that the technology is operational before the coin even hits exchanges. That…
Share
BitcoinEthereumNews2025/09/18 00:32