The post Understanding Agent Frameworks, Runtimes, and Harnesses in AI Development appeared on BitcoinEthereumNews.com. Tony Kim Oct 27, 2025 05:23 Explore the distinctions between agent frameworks, runtimes, and harnesses in AI development, focusing on LangChain, LangGraph, and DeepAgents, as detailed by the LangChain Blog. The LangChain Blog recently delved into the intricate world of agent frameworks, runtimes, and harnesses, offering insights into how these components function and interact within AI development. The discussion centers around three prominent open-source packages maintained by LangChain: LangChain, LangGraph, and DeepAgents. Agent Frameworks: LangChain LangChain is primarily identified as an agent framework, designed to provide abstractions that simplify application development. These abstractions serve as mental models, facilitating easier onboarding for developers and standardizing the building process. However, there are challenges associated with abstractions, particularly if they obscure the underlying processes or lack flexibility for advanced use cases. LangChain 1.0 emphasizes structured content blocks, agent loops, and middleware to enhance flexibility. Other notable agent frameworks include Vercel’s AI SDK, CrewAI, and OpenAI Agents SDK. Agent Runtimes: LangGraph LangGraph stands out as an agent runtime, essential for running agents in production environments. It addresses infrastructure-level needs such as durable execution, streaming support, and human-in-the-loop capabilities. Built from scratch, LangGraph is designed to be a production-ready runtime, powering agent frameworks like LangChain. Comparable projects in this space include Temporal and Inngest, which focus on durable execution engines. Agent Harnesses: DeepAgents DeepAgents represents a newer category, termed as an agent harness. It builds upon LangChain, offering features like default prompts, tool handling, and access to a filesystem, presenting a more comprehensive solution than a typical framework. This concept is akin to Claude Code’s approach with their Claude Agent SDK, although the term ‘agent harness’ is still gaining traction. Choosing the Right Tool Understanding the nuances between these components aids in selecting the appropriate tool for… The post Understanding Agent Frameworks, Runtimes, and Harnesses in AI Development appeared on BitcoinEthereumNews.com. Tony Kim Oct 27, 2025 05:23 Explore the distinctions between agent frameworks, runtimes, and harnesses in AI development, focusing on LangChain, LangGraph, and DeepAgents, as detailed by the LangChain Blog. The LangChain Blog recently delved into the intricate world of agent frameworks, runtimes, and harnesses, offering insights into how these components function and interact within AI development. The discussion centers around three prominent open-source packages maintained by LangChain: LangChain, LangGraph, and DeepAgents. Agent Frameworks: LangChain LangChain is primarily identified as an agent framework, designed to provide abstractions that simplify application development. These abstractions serve as mental models, facilitating easier onboarding for developers and standardizing the building process. However, there are challenges associated with abstractions, particularly if they obscure the underlying processes or lack flexibility for advanced use cases. LangChain 1.0 emphasizes structured content blocks, agent loops, and middleware to enhance flexibility. Other notable agent frameworks include Vercel’s AI SDK, CrewAI, and OpenAI Agents SDK. Agent Runtimes: LangGraph LangGraph stands out as an agent runtime, essential for running agents in production environments. It addresses infrastructure-level needs such as durable execution, streaming support, and human-in-the-loop capabilities. Built from scratch, LangGraph is designed to be a production-ready runtime, powering agent frameworks like LangChain. Comparable projects in this space include Temporal and Inngest, which focus on durable execution engines. Agent Harnesses: DeepAgents DeepAgents represents a newer category, termed as an agent harness. It builds upon LangChain, offering features like default prompts, tool handling, and access to a filesystem, presenting a more comprehensive solution than a typical framework. This concept is akin to Claude Code’s approach with their Claude Agent SDK, although the term ‘agent harness’ is still gaining traction. Choosing the Right Tool Understanding the nuances between these components aids in selecting the appropriate tool for…

Understanding Agent Frameworks, Runtimes, and Harnesses in AI Development

2025/10/27 13:24


Tony Kim
Oct 27, 2025 05:23

Explore the distinctions between agent frameworks, runtimes, and harnesses in AI development, focusing on LangChain, LangGraph, and DeepAgents, as detailed by the LangChain Blog.

The LangChain Blog recently delved into the intricate world of agent frameworks, runtimes, and harnesses, offering insights into how these components function and interact within AI development. The discussion centers around three prominent open-source packages maintained by LangChain: LangChain, LangGraph, and DeepAgents.

Agent Frameworks: LangChain

LangChain is primarily identified as an agent framework, designed to provide abstractions that simplify application development. These abstractions serve as mental models, facilitating easier onboarding for developers and standardizing the building process. However, there are challenges associated with abstractions, particularly if they obscure the underlying processes or lack flexibility for advanced use cases. LangChain 1.0 emphasizes structured content blocks, agent loops, and middleware to enhance flexibility. Other notable agent frameworks include Vercel’s AI SDK, CrewAI, and OpenAI Agents SDK.

Agent Runtimes: LangGraph

LangGraph stands out as an agent runtime, essential for running agents in production environments. It addresses infrastructure-level needs such as durable execution, streaming support, and human-in-the-loop capabilities. Built from scratch, LangGraph is designed to be a production-ready runtime, powering agent frameworks like LangChain. Comparable projects in this space include Temporal and Inngest, which focus on durable execution engines.

Agent Harnesses: DeepAgents

DeepAgents represents a newer category, termed as an agent harness. It builds upon LangChain, offering features like default prompts, tool handling, and access to a filesystem, presenting a more comprehensive solution than a typical framework. This concept is akin to Claude Code’s approach with their Claude Agent SDK, although the term ‘agent harness’ is still gaining traction.

Choosing the Right Tool

Understanding the nuances between these components aids in selecting the appropriate tool for specific needs. While LangGraph can be seen as both a runtime and a framework, the distinctions between these categories remain somewhat fluid. The development community continues to refine these definitions as they explore new mental models for AI development.

For a more detailed exploration of these concepts, visit the LangChain Blog here.

Image source: Shutterstock

Source: https://blockchain.news/news/understanding-agent-frameworks-runtimes-harnesses-ai-development

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

CLARITY Act Gains Support as Bitcoin Policy Momentum Builds

CLARITY Act Gains Support as Bitcoin Policy Momentum Builds

The post CLARITY Act Gains Support as Bitcoin Policy Momentum Builds appeared on BitcoinEthereumNews.com. The crypto regulation in the United States has gained momentum ahead of midterm elections in 2026. Satoshi Action Fund CEO has promised a massive Bitcoin announcement that may change crypto adoption optics. The Clarity Act has already received minimum required support from the Democratic Senators. Crypto regulation in the U.S. is picking up speed heading into the 2026 midterms. The Satoshi Action Fund, led by Dennis Porter, has ramped up lobbying efforts in Washington D.C., pushing lawmakers to prioritize the CLARITY Act. Porter also teased that a “massive” Bitcoin announcement is coming next week; one he claims could change the trajectory of Bitcoin adoption in the U.S.  Industry voices are urging traders to watch closely. Benjamin Aaron Semchee, chairman of Averliz, told followers that Porter’s call deserves attention, underscoring how policy shifts could hit markets fast. What Crypto Regulations Are Expected from Washington D.C? Building on the GENIUS Act The U.S. lawmakers came together from both major parties to pass the GENIUS Act, which focuses on stablecoins as a form of payment.  With the country’s labor data having revealed weakness, lawmakers are now more keen than ever to tap into the emerging technologies to create new and higher paying jobs. Bipartisan Push for the CLARITY Act Momentum is now behind the CLARITY Act, which aims to overhaul crypto market structure rules. On Friday, 12 Democratic Senators, led by Senator Ruben Gallego, reaffirmed their intent to work across the aisle. “We hope our Republican colleagues will agree to a bipartisan authorship process, as is the norm for legislation of this scale. Given our shared interest in moving forward quickly on this issue, we hope they will agree to reasonable requests to allow for true collaboration,” the Dem Senators noted. Related: Ray Dalio Warns of US ‘Economic Heart Attack’ From Debt, Sees…
Paylaş
BitcoinEthereumNews2025/09/20 21:02