Redis was running a large production service with about **10 million monthly active users**. Every record in Redis was a **JSON-serialized Pydantic model** It looked clean and convenient – until it started to hurt. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.Redis was running a large production service with about **10 million monthly active users**. Every record in Redis was a **JSON-serialized Pydantic model** It looked clean and convenient – until it started to hurt. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.

JSON Was Killing Our Redis Memory. Switching Serialization Made It 7× Smaller.

2025/10/30 14:08

We were running a large production service with about 10 million monthly active users, and Redis acted as the main storage for user state. Every record in Redis was a JSON-serialized Pydantic model. It looked clean and convenient – until it started to hurt.

As we grew, our cluster scaled to five Redis nodes, yet memory pressure only kept getting worse. JSON objects were inflating far beyond the size of the actual data, and we were literally paying for air – in cloud invoices, wasted RAM, and degraded performance.

At some point I calculated the ratio of real payload to total storage, and the result made it obvious that we couldn’t continue like this:

14,000 bytes per user in JSON → 2,000 bytes in a binary format

A 7× difference. Just because of the serialization format.

That’s when I built what eventually became PyByntic – a compact binary encoder/decoder for Pydantic models. And below is the story of how I got there, what didn’t work, and why the final approach made Redis (and our wallets) a lot happier.

Why JSON Became a Problem

JSON is great as a universal exchange format. But inside a low-level cache, it turns into a memory-hungry monster:

  • it stores field names in full
  • it stores types implicitly as strings
  • it duplicates structure over and over
  • it’s not optimized for binary data
  • it inflates RAM usage to 3–10× the size of the real payload

When you’re holding tens of millions of objects in Redis, this isn’t some academic inefficiency anymore – it’s a real bill and an extra server in the cluster. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.

What Alternatives Exist (and Why They Didn’t Work)

I went through the obvious candidates:

| Format | Why It Failed in Our Case | |----|----| | Protobuf | Too much ceremony: separate schemas, code generation, extra tooling, and a lot of friction for simple models | | MessagePack | More compact than JSON, but still not enough – and integrating it cleanly with Pydantic was far from seamless | | BSON | Smaller than JSON, but the Pydantic integration story was still clumsy and not worth the hassle |

All of these formats are good in general. But for the specific scenario of “Pydantic + Redis as a state store” they felt like using a sledgehammer to crack a nut – heavy, noisy, and with barely any real relief in memory usage.

I needed a solution that would:

  • drop into the existing codebase with just a couple of lines
  • deliver a radical reduction in memory usage
  • avoid any extra DSLs, schemas, or code generation
  • work directly with Pydantic models without breaking the ecosystem

What I Built

So I ended up writing a minimalist binary format with a lightweight encoder/decoder on top of annotated Pydantic models. That’s how PyByntic was born.

Its API is intentionally designed so that you can drop it in with almost no friction — in most cases, you just replace calls like:

model.serialize() # replaces .model_dump_json() Model.deserialize(bytes) # replaces .model_validate_json()

Example usage:

from pybyntic import AnnotatedBaseModel from pybyntic.types import UInt32, String, Bool from typing import Annotated class User(AnnotatedBaseModel): user_id: Annotated[int, UInt32] username: Annotated[str, String] is_active: Annotated[bool, Bool] data = User( user_id=123, username="alice", is_active=True ) raw = data.serialize() obj = User.deserialize(raw)

Optionally, you can also provide a custom compression function:

import zlib serialized = user.serialize(encoder=zlib.compress) deserialized_user = User.deserialize(serialized, decoder=zlib.decompress)

Comparison

For a fair comparison, I generated 2 million user records based on our real production models. Each user object contained a mix of fields – UInt16, UInt32, Int32, Int64, Bool, Float32, String, and DateTime32. On top of that, every user also had nested objects such as roles and permissions, and in some cases there could be hundreds of permissions per user. In other words, this was not a synthetic toy example — it was a realistic dataset with deeply nested structures and a wide range of field types.

The chart shows how much memory Redis consumes when storing 2,000,000 user objects using different serialization formats. JSON is used as the baseline at approximately 35.1 GB. PyByntic turned out to be the most compact option — just ~4.6 GB (13.3% of JSON), which is about 7.5× smaller. Protobuf and MessagePack also offer a noticeable improvement over JSON, but in absolute numbers they still fall far behind PyByntic.

Let's compare what this means for your cloud bill:

| Format | Price of Redis on GCP | |----|----| | JSON | $876/month | | PyByn­tic | $118/month | | MessagePack | $380/month | | BSON | $522/month | | Protobuf | $187/month |

This calculation is based on storing 2,000,000 user objects using Memorystore for Redis Cluster on Google Cloud Platform. The savings are significant – and they scale even further as your load grows.

Where Does the Space Savings Come From?

The huge memory savings come from two simple facts: binary data doesn’t need a text format, and it doesn’t repeat structure on every object. In JSON, a typical datetime is stored as a string like "1970-01-01T00:00:01.000000" – that’s 26 characters, and since each ASCII character is 1 byte = 8 bits, a single timestamp costs 208 bits. In binary, a DateTime32 takes just 32 bits, making it 6.5× smaller with zero formatting overhead.

The same applies to numbers. For example, 18446744073709551615 (2^64−1) in JSON takes 20 characters = 160 bits, while the binary representation is a fixed 64 bits. And finally, JSON keeps repeating field names for every single object, thousands or millions of times. A binary format doesn’t need that — the schema is known in advance, so there’s no structural tax on every record.

Those three effects – no strings, no repetition, and no formatting overhead – are exactly where the size reduction comes from.

Conclusion

If you’re using Pydantic and storing state in Redis, then JSON is a luxury you pay a RAM tax for. A binary format that stays compatible with your existing models is simply a more rational choice.

For us, PyByntic became exactly that — a logical optimization that didn’t break anything, but eliminated an entire class of problems and unnecessary overhead.

GitHub repository: https://github.com/sijokun/PyByntic

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse?

Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse?

Whales offload 200 million XRP leaving market uncertainty behind. XRP faces potential collapse as whales drive major price shifts. Is XRP’s future in danger after massive sell-off by whales? XRP’s price has been under intense pressure recently as whales reportedly offloaded a staggering 200 million XRP over the past two weeks. This massive sell-off has raised alarms across the cryptocurrency community, as many wonder if the market is on the brink of collapse or just undergoing a temporary correction. According to crypto analyst Ali (@ali_charts), this surge in whale activity correlates directly with the price fluctuations seen in the past few weeks. XRP experienced a sharp spike in late July and early August, but the price quickly reversed as whales began to sell their holdings in large quantities. The increased volume during this period highlights the intensity of the sell-off, leaving many traders to question the future of XRP’s value. Whales have offloaded around 200 million $XRP in the last two weeks! pic.twitter.com/MiSQPpDwZM — Ali (@ali_charts) September 17, 2025 Also Read: Shiba Inu’s Price Is at a Tipping Point: Will It Break or Crash Soon? Can XRP Recover or Is a Bigger Decline Ahead? As the market absorbs the effects of the whale offload, technical indicators suggest that XRP may be facing a period of consolidation. The Relative Strength Index (RSI), currently sitting at 53.05, signals a neutral market stance, indicating that XRP could move in either direction. This leaves traders uncertain whether the XRP will break above its current resistance levels or continue to fall as more whales sell off their holdings. Source: Tradingview Additionally, the Bollinger Bands, suggest that XRP is nearing the upper limits of its range. This often points to a potential slowdown or pullback in price, further raising concerns about the future direction of the XRP. With the price currently around $3.02, many are questioning whether XRP can regain its footing or if it will continue to decline. The Aftermath of Whale Activity: Is XRP’s Future in Danger? Despite the large sell-off, XRP is not yet showing signs of total collapse. However, the market remains fragile, and the price is likely to remain volatile in the coming days. With whales continuing to influence price movements, many investors are watching closely to see if this trend will reverse or intensify. The coming weeks will be critical for determining whether XRP can stabilize or face further declines. The combination of whale offloading and technical indicators suggest that XRP’s price is at a crossroads. Traders and investors alike are waiting for clear signals to determine if the XRP will bounce back or continue its downward trajectory. Also Read: Metaplanet’s Bold Move: $15M U.S. Subsidiary to Supercharge Bitcoin Strategy The post Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse? appeared first on 36Crypto.
Paylaş
Coinstats2025/09/17 23:42