This paper presents a Bayesian Network model for Extreme Programming (XP) that predicts project finish time and defect rates. The model integrates key XP practices like Pair Programming, TDD, and Onsite Customer to forecast project success or failure.This paper presents a Bayesian Network model for Extreme Programming (XP) that predicts project finish time and defect rates. The model integrates key XP practices like Pair Programming, TDD, and Onsite Customer to forecast project success or failure.

A Mathematical Model for Extreme Programming Software Development

2025/08/26 09:48

Abstract and 1. Introduction

  1. Background and 2.1. Related Work

    2.2. The Impact of XP Practices on Software Productivity and Quality

    2.3. Bayesian Network Modelling

  2. Model Design

    3.1. Model Overview

    3.2. Team Velocity Model

    3.3. Defected Story Points Model

  3. Model Validation

    4.1. Experiments Setup

    4.2. Results and Discussion

  4. Conclusions and References

ABSTRACT

A Bayesian Network based mathematical model has been used for modelling Extreme Programming software development process. The model is capable of predicting the expected finish time and the expected defect rate for each XP release. Therefore, it can be used to determine the success/failure of any XP Project. The model takes into account the effect of three XP practices, namely: Pair Programming, Test Driven Development and Onsite Customer practices. The model’s predictions were validated against two case studies. Results show the precision of our model especially in predicting the project finish time.

1. INTRODUCTION

Extreme Programming (XP) is a lightweight software development methodology. XP is one of the iterative informal development methodologies known as Agile methods. XP comprises a number of values, practices and principles. There is no large requirements and design documents. XP uses what is called User Stories instead of requirements. The XP project comprises of a number of User Stories. Each user stories contains a number of Story Points. The development process constructed from iterative small releases. In each release, User Stories are selected to be developed in this release according to their importance.

\ Managers of XP projects suffer from lack of prediction systems capable of estimating the expected effort and quality of the software development process. Managers need to know the probability of success or failure of XP project. Models capable of predicting the project finish time are very helpful to the project managers. Those models should also be capable of predicting the product quality in terms of the expected number of defects. These requirements should be covered in strong mathematical model.

\ In this paper, a Bayesian Network based mathematical model for XP process is presented. The proposed model satisfies the following features:

\

  • It considers the iterative nature of XP by modelling the project as a number of sequential releases.

    \

  • The model able to predict the expected finish time, and therefore it could determine the success/failure of the project.

    \

  • The prediction can be done in the project planning phase before starting the actual development using very simple input data.

    \

  • The model tracks the developer velocity (measured in number of Story Points per day) as function of the developer experience. It also models the increase in the developer velocity as the project goes on.

\

  • The model considers the effect of the Pair Programming and Test Driven Development practices on the Team velocity.

    \

  • The model predicts the process quality by measuring the defect rate in each release.

    \

  • It considers the effect of the Onsite Customer and Test Driven Development practices on the defect rate.

\ The proposed model was implemented using AgenaRisk toolset [1]; a toolset for modelling risk and making predictions based on Bayesian Network. Two case studies were used for the validation of our model. Results show the precision of our model especially in predicting the project finish time.

\ This paper is organized as follows: in the next section, a survey of the related work and an overview of the Bayesian Network will be provided. Model Design is illustrated in section 3, while the validation is provided in section 4. Finally, conclusions are offered in the last section.

\

:::info This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.

:::

:::info Authors:

(1) Mohamed Abouelelam, Software System Engineering, University of Regina, Regina, Canada;

(2) Luigi Benedicenti, Software System Engineering, University of Regina, Regina, Canada.

:::

\

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Paylaş
BitcoinEthereumNews2025/09/18 00:56