This article validates a market simulation and calibration procedure using real-world historical data from the Hong Kong exchange (HKEX).This article validates a market simulation and calibration procedure using real-world historical data from the Hong Kong exchange (HKEX).

Analyzing Historical Trading Data: Applying Simulation-Based Inference to HKEX

2025/09/06 10:21

Abstract and 1. Introduction

2. Relevant Work

3. Methods

3.1 Models

3.2 Summarising Features

3.3 Calibration of Market Model Parameters

4. Experiments

4.1 Zero Intelligence Trader

4.2 Extended Chiarella

4.3 Historical Data

5. Discussion & Future Work

6. Significance, Acknowledgments, and References

4.3 Historical Data

Having demonstrated that we are able to calibrate synthetic data using neural density estimators and embedding networks, we next use our calibration procedure to identify model parameters specific to a single day of trading. We use data from the Hong Kong exchange (HKEX) which reflects a standard trading day. We first evaluate the stylised facts on the historical data to see which are supported and which are violated. As shown in Figure 2, we see that (a) log returns follow a typical normal distribution at medium timescales (minutes) but that this departs from normality as we shorten the timescale (seconds), resulting an increase in kurtosis. Additionally, when calculating the skewness at both timescales, we observe a slight asymmetry (0.44).

\ Shown in Figure 2(c), we observe an absence of autocorrelation in the return series, in (d), a positive correlation between volume and volatility and in (e) we see significant volatility clustering at high lag number. We also observe intermittency in historical data, a large Hurst exponent (0.8) and that the autocorrelation of absolute returns rapidly converges to zero reflecting that the historical data has no long range memory or dependencies, and the order book volumes approximate a Gamma distribution, where 𝛾 = 0.014, 0.018 for bid and ask orders, respectively. However, we also note that some stylised facts are not observed in this data, such as a negative correlation between returns and volatility, and significant concavity in the price impact function, which is essentially flat at 0.07.

\ In Figure 4, we show the estimated posterior distribution for the historical data using the VWAP from the fist level of the LOB. We again observe that parameters for the fundamental trader and noise trader are constrained, whereas those for the momentum trader have high uncertainty. Interestingly, we see that the decay rate for high frequency traders has reduced uncertainty, indicating that high frequency behaviours may be significant in this trading day. Future work will investigate this. Shown in Figure 2, we are again able to reproduce several of the stylised facts, including (a) the heavy tails and normality of log returns, (c) the absence of auto-correlations in return series, and (e) a strong correlation between volume and volatility, as well as intermittency, no long range memory (where the Hurst exponent is 0.76) or dependencies of absolute returns, and a Gamma distribution in the order book volume (where 𝛾 = 0.28 for both bid and ask orders). Interestingly, we observe that our simulator is able to recreate stylised facts that are not present in the historical data such as negative correlation between returns and volatility and a stronger asymmetry in returns (-0.95). We again observe that the price impact function is approximately flat (0.01). The only stylised fact that is observed less strongly in our simulator is the volatility clustering, shown in Figure 2(f), which decreases with increasing lag but is not consistently positive.

\ We next use the historical data to estimate the posterior for the ZI trader model, as shown in Figure 5. We find that the parameter values are constrained with similar uncertainties as observed when using synthetic data. We again see a sharp bi-modality in the rate at which market orders are submitted that spans the prior. When calculating the stylised facts, we observe the same behaviours as with the extended Chiarella model. However, the price impact function is now convex (with coefficient -0.25) and where there is negligible correlation between returns and volatility (correlation coefficient is -0.0005).

\

:::info Authors:

(1) Namid R. Stillman, Simudyne Limited, United Kingdom (namid@simudyne.com);

(2) Rory Baggott, Simudyne Limited, United Kingdom (rory@simudyne.com);

(3) Justin Lyon, Simudyne Limited, United Kingdom (justin@simudyne.com);

(4) Jianfei Zhang, Hong Kong Exchanges and Clearing Limited, Hong Kong (jianfeizhang@hkex.com.hk);

(5) Dingqiu Zhu, Hong Kong Exchanges and Clearing Limited, Hong Kong (dingqiuzhu@hkex.com.hk);

(6) Tao Chen, Hong Kong Exchanges and Clearing Limited, Hong Kong (taochen@hkex.com.hk);

(7) Perukrishnen Vytelingum, Simudyne Limited, United Kingdom (krishnen@simudyne.com).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Piyasa Fırsatı
RealLink Logosu
RealLink Fiyatı(REAL)
$0.07205
$0.07205$0.07205
-2.03%
USD
RealLink (REAL) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Jollibee sets Jan. 24 redemption for $300-M securities

Jollibee sets Jan. 24 redemption for $300-M securities

JOLLIBEE FOODS Corp. (JFC) will redeem its $300-million guaranteed senior perpetual capital securities on Jan. 24, 2026, through its wholly owned subsidiary Jollibee
Paylaş
Bworldonline2025/12/16 00:04
XRP Forms 2022-Like RSI Signal, Next Stop: All-Time Highs?

XRP Forms 2022-Like RSI Signal, Next Stop: All-Time Highs?

XRP shows a bullish RSI divergence on the daily chart, similar to 2022, suggesting a possible trend reversal.Read more...
Paylaş
Coinstats2025/12/16 01:13
How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

The post How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings appeared on BitcoinEthereumNews.com. contributor Posted: September 17, 2025 As digital assets continue to reshape global finance, cloud mining has become one of the most effective ways for investors to generate stable passive income. Addressing the growing demand for simplicity, security, and profitability, IeByte has officially upgraded its fully automated cloud mining platform, empowering both beginners and experienced investors to earn Bitcoin, Dogecoin, and other mainstream cryptocurrencies without the need for hardware or technical expertise. Why cloud mining in 2025? Traditional crypto mining requires expensive hardware, high electricity costs, and constant maintenance. In 2025, with blockchain networks becoming more competitive, these barriers have grown even higher. Cloud mining solves this by allowing users to lease professional mining power remotely, eliminating the upfront costs and complexity. IeByte stands at the forefront of this transformation, offering investors a transparent and seamless path to daily earnings. IeByte’s upgraded auto-cloud mining platform With its latest upgrade, IeByte introduces: Full Automation: Mining contracts can be activated in just one click, with all processes handled by IeByte’s servers. Enhanced Security: Bank-grade encryption, cold wallets, and real-time monitoring protect every transaction. Scalable Options: From starter packages to high-level investment contracts, investors can choose the plan that matches their goals. Global Reach: Already trusted by users in over 100 countries. Mining contracts for 2025 IeByte offers a wide range of contracts tailored for every investor level. From entry-level plans with daily returns to premium high-yield packages, the platform ensures maximum accessibility. Contract Type Duration Price Daily Reward Total Earnings (Principal + Profit) Starter Contract 1 Day $200 $6 $200 + $6 + $10 bonus Bronze Basic Contract 2 Days $500 $13.5 $500 + $27 Bronze Basic Contract 3 Days $1,200 $36 $1,200 + $108 Silver Advanced Contract 1 Day $5,000 $175 $5,000 + $175 Silver Advanced Contract 2 Days $8,000 $320 $8,000 + $640 Silver…
Paylaş
BitcoinEthereumNews2025/09/17 23:48