This article introduces MENT-Flow, a novel method using normalizing flows to perform maximum-entropy tomography that scales straightforwardly to 6D phase space.This article introduces MENT-Flow, a novel method using normalizing flows to perform maximum-entropy tomography that scales straightforwardly to 6D phase space.

Invertible Generative Models for Beam Reconstruction: Introducing the MENT-Flow Approach

I. Introduction

II. Maximum Entropy Tomography

  • A. Ment
  • B. Ment-Flow

III. Numerical Experiments

  • A. 2D reconstructions from 1D projections
  • B. 6D reconstructions from 1D projections

IV. Conclusion and Extensions

V. Acknowledgments and References

B. MENT-Flow

In the absence of a method to directly optimize the Lagrange functions

\

\ Roussel et al. [10] showed that generative models can also be trained to match projections of the unknown distribution. To train the model via gradient descent, the transformations from the base distribution to the measurement locations must be differentiable:

\

\

\

\ It is not immediately obvious whether normalizing flows can learn complex 6D distributions from projections in reasonable time. Flows preserve the topological features of the base distribution; for example, flows cannot perfectly represent disconnected modes if the base distribution has a single mode [28]. Thus, building complex flows requires layering transformations, either as a series of maps (discrete flows) or a system of differential equations (continuous flows), often leading to large models and expensive training.[3]

\

\ The model’s representational power increases with the number of parameters in the masked neural network and the number of knots in the rational-quadratic splines. We can also define more than one flow layer. For the composition of T layers

\

\ and transformed coordinates

\

\ the Jacobian determinant is available from

\

\ Compared to MENT, MENT-Flow increases the reconstruction model complexity and does not guarantee an exact entropy maximum. However, MENT-Flow scales straightforwardly to n-dimensional phase space and immediately generates independent and identically distributed samples from the reconstructed distribution function.

\

:::info Authors:

(1) Austin Hoover, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA (hooveram@ornl.gov);

(2) Jonathan C. Wong, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Market Opportunity
BEAM Logo
BEAM Price(BEAM)
$0.029
$0.029$0.029
-8.37%
USD
BEAM (BEAM) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Share
BitcoinEthereumNews2025/09/18 00:09
XRP Price Prediction: Ripple CEO at Davos Predicts Crypto ATHs This Year – $5 XRP Next?

XRP Price Prediction: Ripple CEO at Davos Predicts Crypto ATHs This Year – $5 XRP Next?

XRP has traded near $1.90 as Ripple CEO Brad Garlinghouse has predicted from Davos that the crypto market will reach new highs this year. Analysts have pointed
Share
Coinstats2026/01/22 04:49
Supreme Court rejected Trump’s attempt to fire Fed Governor Lisa Cook

Supreme Court rejected Trump’s attempt to fire Fed Governor Lisa Cook

The Supreme Court has refused to support President Donald Trump in his attempt to fire Federal Reserve Governor Lisa Cook, after justices raised serious doubts
Share
Cryptopolitan2026/01/22 05:30