The post Together AI’s CDLM Achieves 14.5x Faster AI Inference Without Quality Loss appeared on BitcoinEthereumNews.com. Lawrence Jengar Feb 19, 2026 18:45 The post Together AI’s CDLM Achieves 14.5x Faster AI Inference Without Quality Loss appeared on BitcoinEthereumNews.com. Lawrence Jengar Feb 19, 2026 18:45

Together AI’s CDLM Achieves 14.5x Faster AI Inference Without Quality Loss



Lawrence Jengar
Feb 19, 2026 18:45

Consistency Diffusion Language Models solve two critical bottlenecks in AI inference, delivering up to 14.5x latency improvements while maintaining accuracy on coding and math tasks.

Together AI has released a post-training technique called Consistency Diffusion Language Models (CDLM) that cuts inference latency by up to 14.5x on coding benchmarks while preserving output quality. The breakthrough addresses two fundamental inefficiencies that have kept diffusion-based language models from competing with traditional autoregressive architectures in production environments.

Standard diffusion language models generate text by iteratively refining a masked sequence over multiple steps—a process that enables parallel token generation but creates punishing computational overhead. Full bidirectional attention requires recomputing attention across the entire context at every denoising step, and reducing step counts typically destroys output quality.

The Technical Fix

CDLM attacks both problems through a three-part training objective. The system collects decoding trajectories from a teacher model, then trains a student model using a block-wise causal attention mask. This architectural shift enables exact KV caching for completed blocks—something impossible with standard bidirectional attention.

The consistency loss component enforces temporal stability within blocks, teaching the model to finalize multiple tokens reliably rather than degrading when step counts drop. A distillation loss anchors the student’s predictions to the teacher’s distributions, while an auxiliary masked-denoising objective preserves general reasoning capabilities.

Benchmark Performance

On GSM8K chain-of-thought reasoning, CDLM delivered 11.2x latency improvement. MBPP coding tasks saw the peak 14.5x reduction. Step counts dropped 4.1x to 7.7x across benchmarks with minimal accuracy degradation.

The contrast with naive step reduction is stark. Simply truncating refinement steps on baseline diffusion models causes marked accuracy collapse. CDLM maintains quality at equivalent step budgets while achieving roughly half the latency through caching—demonstrating that stable multi-token refinement requires explicit training rather than inference-time shortcuts.

Why Block-Wise Architecture Matters

Together AI’s hardware analysis reveals why CDLM occupies a computational sweet spot. Autoregressive decoding is memory-bound at small batch sizes, with arithmetic intensity near 1 at batch size 1. Vanilla diffusion models swing to the opposite extreme—compute-bound even at batch size 1 because full bidirectional attention processes entire sequences each step.

Block-wise diffusion sits between these extremes. Higher arithmetic intensity than autoregressive models due to intra-block parallelism, but lower than vanilla diffusion—a balanced operating point for the small-batch inference scenarios common in production deployments.

Market Context

The release follows Inception Labs’ February 2025 announcement of diffusion-based language models promising 10x faster generation than traditional LLMs. Google’s Gemini Diffusion has since demonstrated commercial-grade parity with autoregressive architectures, signaling growing industry confidence in the approach.

CDLM’s post-training recipe can theoretically be applied to any block-diffusion model, suggesting the technique’s benefits should compound as stronger base models emerge. Together AI points to collecting trajectories from larger teacher models and training mid-scale students as a promising scaling direction—a hint at where inference optimization research may head next.

Image source: Shutterstock

Source: https://blockchain.news/news/together-ai-cdlm-14x-faster-inference

Market Opportunity
4 Logo
4 Price(4)
$0.008659
$0.008659$0.008659
-2.36%
USD
4 (4) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Do You Need a Lawyer to Start a Company in Los Angeles?

Do You Need a Lawyer to Start a Company in Los Angeles?

Starting a company can be your dream come true. You have an idea. You may have savings. And even have your first client lined up. Then you come out of your bubble
Share
Techbullion2026/02/20 14:11
Microsoft Corp. $MSFT blue box area offers a buying opportunity

Microsoft Corp. $MSFT blue box area offers a buying opportunity

The post Microsoft Corp. $MSFT blue box area offers a buying opportunity appeared on BitcoinEthereumNews.com. In today’s article, we’ll examine the recent performance of Microsoft Corp. ($MSFT) through the lens of Elliott Wave Theory. We’ll review how the rally from the April 07, 2025 low unfolded as a 5-wave impulse followed by a 3-swing correction (ABC) and discuss our forecast for the next move. Let’s dive into the structure and expectations for this stock. Five wave impulse structure + ABC + WXY correction $MSFT 8H Elliott Wave chart 9.04.2025 In the 8-hour Elliott Wave count from Sep 04, 2025, we saw that $MSFT completed a 5-wave impulsive cycle at red III. As expected, this initial wave prompted a pullback. We anticipated this pullback to unfold in 3 swings and find buyers in the equal legs area between $497.02 and $471.06 This setup aligns with a typical Elliott Wave correction pattern (ABC), in which the market pauses briefly before resuming its primary trend. $MSFT 8H Elliott Wave chart 7.14.2025 The update, 10 days later, shows the stock finding support from the equal legs area as predicted allowing traders to get risk free. The stock is expected to bounce towards 525 – 532 before deciding if the bounce is a connector or the next leg higher. A break into new ATHs will confirm the latter and can see it trade higher towards 570 – 593 area. Until then, traders should get risk free and protect their capital in case of a WXY double correction. Conclusion In conclusion, our Elliott Wave analysis of Microsoft Corp. ($MSFT) suggested that it remains supported against April 07, 2025 lows and bounce from the blue box area. In the meantime, keep an eye out for any corrective pullbacks that may offer entry opportunities. By applying Elliott Wave Theory, traders can better anticipate the structure of upcoming moves and enhance risk management in volatile markets. Source: https://www.fxstreet.com/news/microsoft-corp-msft-blue-box-area-offers-a-buying-opportunity-202509171323
Share
BitcoinEthereumNews2025/09/18 03:50
GBP/JPY holds losses near 208.50 ahead of UK Retail Sales, PMI data

GBP/JPY holds losses near 208.50 ahead of UK Retail Sales, PMI data

The post GBP/JPY holds losses near 208.50 ahead of UK Retail Sales, PMI data appeared on BitcoinEthereumNews.com. GBP/JPY loses ground for the second successive
Share
BitcoinEthereumNews2026/02/20 13:45