GLUE and V&L results show near–full-tune accuracy, strong few-shot transfer, and far lower per-task storage than current adapter/prefix methods.GLUE and V&L results show near–full-tune accuracy, strong few-shot transfer, and far lower per-task storage than current adapter/prefix methods.

Cut Fine-Tuning Cost: Adapt LMs to Multi-Modal Tasks with <1% New Params

:::info Authors:

(1) Zhengkun Zhang, with Equal contribution from Work is done at the internship of Noah’s Ark Lab, Huawei Technologies

(2) Wenya Guo and TKLNDST, CS, Nankai University, China (yangzl@nankai.edu.cn);

(3) Xiaojun Meng, with Equal contribution from Noah’s Ark Lab, Huawei Technologies;

(4) Yasheng Wang, Noah’s Ark Lab, Huawei Technologies;

(5) Yadao Wang, Noah’s Ark Lab, Huawei Technologies;

(6) Xin Jiang, Noah’s Ark Lab, Huawei Technologies;

(7) Qun Liu, Noah’s Ark Lab, Huawei Technologies;

(8) Zhenglu Yang, TKLNDST, CS, Nankai University, China.

:::

Abstract and 1. Introduction

  1. Related Work

  2. Preliminaries

  3. Proposed Method

  4. Experimental Setup

  5. Results and Analysis

  6. Discussion and Conclusion, and References

    \

A. The Connection Between Prefix-tuning and Hypernetwork

B. Number of Tunable Parameters

C. Input-output formats

Abstract

The workflow of pretraining and fine-tuning has emerged as a popular paradigm for solving various NLP and V&L (Vision-and-Language) downstream tasks. With the capacity of pretrained models growing rapidly, how to perform parameter-efficient fine-tuning has become fairly important for quick transfer learning and deployment. In this paper, we design a novel unified parameter-efficient transfer learning framework that works effectively on both pure language and V&L tasks. In particular, we use a shared hypernetwork that takes trainable hyper-embeddings as input, and outputs weights for fine-tuning different small modules in a pretrained language model, such as tuning the parameters inserted into multi-head attention blocks (i.e., prefix-tuning) and feedforward blocks (i.e., adapter-tuning). We define a set of embeddings (e.g., layer, block, task and visual embeddings) as the key components to calculate hyper-embeddings, which thus can support both pure language and V&L tasks. Our proposed framework adds fewer trainable parameters in multi-task learning while achieves superior performances and transfer ability compared to state-of-the-art methods. Empirical results on the GLUE benchmark and multiple V&L tasks confirm the effectiveness of our framework on both textual and visual modalities. [1]

\

1. Introduction

Pretraining and fine-tuning are now the prevalent paradigm in natural language processing, yielding state-of-the-art performances on a variety of down-steam tasks (Devlin et al., 2019). With pre-trained language models (PLMs) growing rapidly in size, it becomes increasingly infeasible to perform conventional fine-tuning on all model parameters, i.e., full fine-tuning. It is even more time & space-consuming for multi-tasking if separate replicas of model parameters are updated and saved per single task.

\ To mitigate these issues, there has recently been one line of research on Parameter-Efficient Language model Tuning (PELT). A few lightweight transfer learning methods have been proposed and they only update a subset of model parameters while freeze the remaining most parameters (Liu et al., 2021b). Extra trainable task-specific model parameters can also be newly introduced to PLMs, such as the widely used adapter-tuning (Houlsby et al., 2019) and prefixtuning (Li & Liang, 2021) methods. The former adaptertuning adds new parameters between transformer layers, while the later prepends tunable prefix vectors to the keys and values of multi-head attention at each layer. Although the number of parameters in the introduced adapter or prefix is much fewer than the original PLM, training these new parameters still requires a lot of resources due to the complex structure of PLMs.

\ Apart from traditional NLP tasks, fine-tuning language models pretrained on pure text corpora to perform various V&L tasks, has merged as a upward trend. Previous methods (e.g., VL-T5 from Cho et al. (2021)) often concatenate visual patch tokens and textual tokens as input to a pretrained language model (e.g., T5 from Raffel et al. (2020)), and then finetune the whole model on V&L tasks. This tuning towards vision-and-language has achieved a noticeable improvement to V&L tasks (Cho et al., 2021). The key advantage therein is that language models with large capacity and semantic interpretation serve as a cornerstone to benefit visual language alignment and modelling in a wide range of V&L tasks.

\ Similarly, training all the parameters of PLMs for handling visual input is time-consuming. It is crucial to explore how a small number of trainable parameters can equip a language model with the ability of handling visual input and V&L tasks. Existing methods typically handle the visual input via a prompt-tuning form, and prepend visual patch tokens (i.e., visual prefix of Frozen in Tsimpoukelli et al. (2021)) to the textual sequence. To reduce the trainable parameters, VL-adapter (Sung et al., 2021) adopts the adapter-tuning technique from NLP to the frozen model VL-T5, which can match the performance of full fine-tuning.

\ Inspired by the recent progress of parameter-efficient tuning, we are motivated to unify a transfer learning framework that supports both language and V&L models in tackling with multitasks. We use a shared hypernetwork (Mahabadi et al., 2021) that is able to take multi-task and multi-modal information as input, and generate weights for tuning different task-specific modules of PLMs in transfer learning. As shown in Figure 1, when finetuning on multitasks, only the shared hypernetwork and its input embedding (namely, hyper-embedding) consisting of layer, block, task and visual embeddings, along with layer normalization, are trained. Such unified parameter-efficient tuning reduces a great number of trainable parameters.

\ We experiment with two task-specific modules that use the weights output by our hypernetwork. They are respectively multi-head attention modules (Li & Liang, 2021) and task-specific adapter (Houlsby et al., 2019). Different from previous methods using visual input in a prompt-tuning manner, we present a novel perspective of adopting visual input to the above prefix-tuning and adapter-tuning modules. Empirical results on GLUE benchmark and multiple V&L tasks confirm the effectiveness of our unified framework.

\ In summary, we make the following contributions:

\ • We propose an unified parameter-efficient framework for vision and language transfer learning, which supports tuning both language and V&L models on multitasks.

\ • We present a novel method of leveraging visual modality as input for a shared hypernetwork, which generates weights for prefix-tuning and adapter-tuning modules.

\ • We demonstrate that our framework scales more efficiently than prior work. Empirical results on GLUE benchmark show the effectiveness of our proposed framework in multi-task learning. Empirical results on multiple vision-and-language tasks evidence its feasibility and usefulness in multi-modal transfer learning.

\ • We also perform extensive experiments on few-shot domain transfer in pure language and V&L scenarios, and results reveal that the learned shared knowledge across multitasks in our framework is able to positively transfer to unseen domain tasks.

\

:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

[1] We will release our code to facilitate future work.

Market Opportunity
NEAR Logo
NEAR Price(NEAR)
$1.723
$1.723$1.723
-3.58%
USD
NEAR (NEAR) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Mitosis Price Flashes a Massive Breakout Hope; Cup-And-Handle Pattern Signals MITO Targeting 50% Rally To $0.115305 Level

Mitosis Price Flashes a Massive Breakout Hope; Cup-And-Handle Pattern Signals MITO Targeting 50% Rally To $0.115305 Level

The analyst identified a formation of a cup-and-handle pattern on Mitosis’s chart, suggesting that MITO is preparing to see a looming price explosion.
Share
Blockchainreporter2026/01/18 09:00
Spot ETH ETFs Surge: Remarkable $48M Inflow Streak Continues

Spot ETH ETFs Surge: Remarkable $48M Inflow Streak Continues

BitcoinWorld Spot ETH ETFs Surge: Remarkable $48M Inflow Streak Continues The cryptocurrency world is buzzing with exciting news as Spot ETH ETFs continue to capture significant investor attention. For the second consecutive day, these innovative investment vehicles have seen substantial positive flows, reinforcing confidence in the Ethereum ecosystem. This consistent performance signals a growing appetite for regulated crypto exposure among traditional investors. What’s Fueling the Latest Spot ETH ETF Inflows? On September 19, U.S. Spot ETH ETFs collectively recorded a net inflow of an impressive $48 million. This marked another day of positive momentum, building on previous gains. Such figures are not just numbers; they represent tangible capital moving into the Ethereum market through accessible investment products. BlackRock’s ETHA Leads the Charge: A standout performer was BlackRock’s ETHA, which alone attracted a staggering $140 million in inflows. This substantial figure highlights the significant influence of major financial institutions in driving the adoption of crypto-backed ETFs. Institutional Confidence: The consistent inflows, particularly from prominent asset managers like BlackRock, suggest increasing institutional comfort and conviction in Ethereum’s long-term potential. Why Are Consecutive Spot ETH ETF Inflows So Significant? Two consecutive days of net inflows into Spot ETH ETFs are more than just a fleeting trend; they indicate a strengthening pattern of investor interest. This sustained positive movement suggests that initial hesitancy might be giving way to broader acceptance and strategic positioning within the digital asset space. Understanding the implications of these inflows is crucial: Market Validation: Continuous inflows serve as a strong validation for Ethereum as a legitimate and valuable asset class within traditional finance. Liquidity and Stability: Increased capital flowing into these ETFs can contribute to greater market liquidity and potentially enhance price stability for Ethereum itself, reducing volatility over time. Paving the Way: The success of Spot ETH ETFs could also pave the way for other cryptocurrency-based investment products, further integrating digital assets into mainstream financial portfolios. Are All Spot ETH ETFs Experiencing the Same Momentum? While the overall picture for Spot ETH ETFs is overwhelmingly positive, it’s important to note that individual fund performances can vary. The market is dynamic, and different funds may experience unique flow patterns based on investor preferences, fund structure, and underlying strategies. Mixed Performance: On the same day, Fidelity’s FETH saw net outflows of $53.4 million, and Grayscale’s Mini ETH recorded outflows of $11.3 million. Normal Market Fluctuations: These outflows, while notable, are a normal part of market dynamics. Investors might be rebalancing portfolios, taking profits, or shifting capital between different investment vehicles. The net positive inflow across the entire sector indicates that new money is still entering faster than it is leaving. This nuanced view helps us appreciate the complex interplay of forces shaping the market for Spot ETH ETFs. What’s Next for Spot ETH ETFs and the Ethereum Market? The sustained interest in Spot ETH ETFs suggests a potentially bright future for Ethereum’s integration into traditional financial markets. As more investors gain access to ETH through regulated products, the demand for the underlying asset could increase, influencing its price and overall market capitalization. For investors looking to navigate this evolving landscape, here are some actionable insights: Stay Informed: Keep an eye on daily inflow and outflow data, as these can provide early indicators of market sentiment. Understand Diversification: While Spot ETH ETFs offer exposure, remember the importance of a diversified investment portfolio. Monitor Regulatory Developments: The regulatory environment for cryptocurrencies is constantly evolving, which can impact the performance and availability of these investment products. Conclusion: A Promising Horizon for Ethereum The consistent positive net inflows into Spot ETH ETFs for a second straight day underscore a significant shift in how institutional and retail investors view Ethereum. This growing confidence, spearheaded by major players like BlackRock, signals a maturing market where digital assets are increasingly seen as viable components of a modern investment strategy. As the ecosystem continues to develop, these ETFs will likely play a crucial role in shaping Ethereum’s future trajectory and its broader acceptance in global finance. It’s an exciting time to watch the evolution of these groundbreaking financial instruments. Frequently Asked Questions (FAQs) Q1: What is a Spot ETH ETF? A Spot ETH ETF (Exchange-Traded Fund) is an investment product that directly holds Ethereum. It allows investors to gain exposure to Ethereum’s price movements without needing to buy, store, or manage the actual cryptocurrency themselves. Q2: Why are these recent inflows into Spot ETH ETFs important? The recent inflows signify growing institutional and retail investor confidence in Ethereum as an asset. Consistent positive flows can lead to increased market liquidity, potential price stability, and broader acceptance of cryptocurrencies in traditional financial portfolios. Q3: Which funds are leading the inflows for Spot ETH ETFs? On September 19, BlackRock’s ETHA led the group with a substantial $140 million in inflows, demonstrating strong interest from a major financial institution. Q4: Do all Spot ETH ETFs experience inflows simultaneously? No, not all Spot ETH ETFs experience inflows at the same time. While the overall sector may see net positive flows, individual funds like Fidelity’s FETH and Grayscale’s Mini ETH can experience outflows due to various factors such as rebalancing or profit-taking by investors. Q5: What does the success of Spot ETH ETFs mean for Ethereum’s price? Increased demand through Spot ETH ETFs can potentially drive up the price of Ethereum by increasing buying pressure on the underlying asset. However, numerous factors influence crypto prices, so it’s not a guaranteed outcome. If you found this article insightful, consider sharing it with your network! Your support helps us continue to provide valuable insights into the dynamic world of cryptocurrency. Spread the word and help others understand the exciting developments in Spot ETH ETFs! To learn more about the latest crypto market trends, explore our article on key developments shaping Ethereum institutional adoption. This post Spot ETH ETFs Surge: Remarkable $48M Inflow Streak Continues first appeared on BitcoinWorld.
Share
Coinstats2025/09/20 11:10
Trump imposes 10% tariffs on eight European countries over Greenland.

Trump imposes 10% tariffs on eight European countries over Greenland.

PANews reported on January 18th that, according to Jinshi News, on January 17th local time, US President Trump announced via social media that, due to the Greenland
Share
PANews2026/01/18 08:46