The post Bad samples can poison any AI model, study finds appeared on BitcoinEthereumNews.com. Homepage > News > Business > Bad samples can poison any AI model, study finds A new study has found that as few as 250 malicious documents are enough to corrupt an artificial intelligence (AI) large language model (LLM), “regardless of model size or training data volume.” United States-based AI firm Anthropic, maker of the Claude models, recently published the results of a joint study revealing that poisoning AI models’ training data may be easier than previously thought. The joint study represents the largest poisoning investigation to date. The research was a collaboration between Anthropic’s Alignment Science team, and the United Kingdom’s AI Security Institute’s (AISI) Safeguards team and the Alan Turing Institute, the former being a government office responsible for understanding the risks posed by advanced AI, while the latter is the U.K.’s national institute for data science and AI. “Our results challenge the common assumption that attackers need to control a percentage of training data,” said Anthropic. “Instead, they may just need a small, fixed amount.” Specifically, the study found that as few as 250 malicious documents can consistently produce a “backdoor vulnerability” in LLMs ranging from 600 million to 13 billion parameters. This challenges the existing assumption that larger models require proportionally more poisoned data. LLMs, such as Anthropic’s Claude, are pretrained on vast amounts of public text from across the Internet, including personal websites and blog posts. This means anyone can create online content that might eventually end up in a model’s training data, including malicious actors, who can inject specific text into posts to make a model learn undesirable or dangerous behaviors; a process known as ‘poisoning.’ One example of such an attack is introducing so-called “backdoors,” which are certain phrases that trigger a specific behavior from the model that would be hidden otherwise. These… The post Bad samples can poison any AI model, study finds appeared on BitcoinEthereumNews.com. Homepage > News > Business > Bad samples can poison any AI model, study finds A new study has found that as few as 250 malicious documents are enough to corrupt an artificial intelligence (AI) large language model (LLM), “regardless of model size or training data volume.” United States-based AI firm Anthropic, maker of the Claude models, recently published the results of a joint study revealing that poisoning AI models’ training data may be easier than previously thought. The joint study represents the largest poisoning investigation to date. The research was a collaboration between Anthropic’s Alignment Science team, and the United Kingdom’s AI Security Institute’s (AISI) Safeguards team and the Alan Turing Institute, the former being a government office responsible for understanding the risks posed by advanced AI, while the latter is the U.K.’s national institute for data science and AI. “Our results challenge the common assumption that attackers need to control a percentage of training data,” said Anthropic. “Instead, they may just need a small, fixed amount.” Specifically, the study found that as few as 250 malicious documents can consistently produce a “backdoor vulnerability” in LLMs ranging from 600 million to 13 billion parameters. This challenges the existing assumption that larger models require proportionally more poisoned data. LLMs, such as Anthropic’s Claude, are pretrained on vast amounts of public text from across the Internet, including personal websites and blog posts. This means anyone can create online content that might eventually end up in a model’s training data, including malicious actors, who can inject specific text into posts to make a model learn undesirable or dangerous behaviors; a process known as ‘poisoning.’ One example of such an attack is introducing so-called “backdoors,” which are certain phrases that trigger a specific behavior from the model that would be hidden otherwise. These…

Bad samples can poison any AI model, study finds

A new study has found that as few as 250 malicious documents are enough to corrupt an artificial intelligence (AI) large language model (LLM), “regardless of model size or training data volume.”

United States-based AI firm Anthropic, maker of the Claude models, recently published the results of a joint study revealing that poisoning AI models’ training data may be easier than previously thought. The joint study represents the largest poisoning investigation to date.

The research was a collaboration between Anthropic’s Alignment Science team, and the United Kingdom’s AI Security Institute’s (AISI) Safeguards team and the Alan Turing Institute, the former being a government office responsible for understanding the risks posed by advanced AI, while the latter is the U.K.’s national institute for data science and AI.

“Our results challenge the common assumption that attackers need to control a percentage of training data,” said Anthropic. “Instead, they may just need a small, fixed amount.”

Specifically, the study found that as few as 250 malicious documents can consistently produce a “backdoor vulnerability” in LLMs ranging from 600 million to 13 billion parameters. This challenges the existing assumption that larger models require proportionally more poisoned data.

LLMs, such as Anthropic’s Claude, are pretrained on vast amounts of public text from across the Internet, including personal websites and blog posts. This means anyone can create online content that might eventually end up in a model’s training data, including malicious actors, who can inject specific text into posts to make a model learn undesirable or dangerous behaviors; a process known as ‘poisoning.’

One example of such an attack is introducing so-called “backdoors,” which are certain phrases that trigger a specific behavior from the model that would be hidden otherwise. These vulnerabilities can pose significant risks to AI security.

“Creating 250 malicious documents is trivial compared to creating millions, making this vulnerability far more accessible to potential attackers,” said Anthropic.

Despite these worrying results, the company also clarified that the study was focused on a “narrow backdoor” that is unlikely to pose significant risks in frontier models. Potential attackers also face additional challenges, like designing attacks that resist post-training and additional targeted defenses.

“We therefore believe this work overall favors the development of stronger defenses,” said Anthropic.

Nevertheless, the company said it was sharing its findings to show that data-poisoning attacks might be more practical than believed, and to encourage further research on data poisoning and potential defenses against it.

Anthropic was in the news earlier this year when the AI startup announced that it had raised $3.5 billion at a $61.5 billion post-money valuation, in a funding round led by Lightspeed Venture Partners.

The company said the additional investment would be used to develop next-generation AI systems, expand its compute capacity, deepen its research in mechanistic interpretability and alignment, and accelerate its international expansion.

In order for artificial intelligence (AI) to work right within the law and thrive in the face of growing challenges, it needs to integrate an enterprise blockchain system that ensures data input quality and ownership—allowing it to keep data safe while also guaranteeing the immutability of data. Check out CoinGeek’s coverage on this emerging tech to learn more why Enterprise blockchain will be the backbone of AI.

Watch | Alex Ball on the future of tech: AI development and entrepreneurship

title=”YouTube video player” frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share” referrerpolicy=”strict-origin-when-cross-origin” allowfullscreen=””>

Source: https://coingeek.com/bad-samples-can-poison-any-ai-model-study-finds/

Market Opportunity
Bad Idea AI Logo
Bad Idea AI Price(BAD)
$0.00000000143
$0.00000000143$0.00000000143
0.00%
USD
Bad Idea AI (BAD) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

WLD Price Prediction: Targets $0.73 by February as Bullish Momentum Builds

WLD Price Prediction: Targets $0.73 by February as Bullish Momentum Builds

The post WLD Price Prediction: Targets $0.73 by February as Bullish Momentum Builds appeared on BitcoinEthereumNews.com. Zach Anderson Jan 15, 2026 09:09 Worldcoin
Share
BitcoinEthereumNews2026/01/16 02:05
Top Solana Treasury Firm Forward Industries Unveils $4 Billion Capital Raise To Buy More SOL ⋆ ZyCrypto

Top Solana Treasury Firm Forward Industries Unveils $4 Billion Capital Raise To Buy More SOL ⋆ ZyCrypto

The post Top Solana Treasury Firm Forward Industries Unveils $4 Billion Capital Raise To Buy More SOL ⋆ ZyCrypto appeared on BitcoinEthereumNews.com. Advertisement &nbsp &nbsp Forward Industries, the largest publicly traded Solana treasury company, has filed a $4 billion at-the-market (ATM) equity offering program with the U.S. SEC  to raise more capital for additional SOL accumulation. Forward Strategies Doubles Down On Solana Strategy In a Wednesday press release, Forward Industries revealed that the 4 billion ATM equity offering program will allow the company to issue and sell common stock via Cantor Fitzgerald under a sales agreement dated Sept. 16, 2025. Forward said proceeds will go toward “general corporate purposes,” including the pursuit of its Solana balance sheet and purchases of income-generating assets. The sales of the shares are covered by an automatic shelf registration statement filed with the US Securities and Exchange Commission that is already effective – meaning the shares will be tradable once they’re sold. An automatic shelf registration allows certain publicly listed companies to raise capital with flexibility swiftly.  Kyle Samani, Forward’s chairman, astutely described the ATM offering as “a flexible and efficient mechanism” to raise and deploy capital for the company’s Solana strategy and bolster its balance sheet.  Advertisement &nbsp Though the maximum amount is listed as $4 billion, the firm indicated that sales may or may not occur depending on existing market conditions. “The ATM Program enhances our ability to continue scaling that position, strengthen our balance sheet, and pursue growth initiatives in alignment with our long-term vision,” Samani said. Forward Industries kicked off its Solana treasury strategy on Sept. 8. The Wednesday S-3 form follows Forward’s $1.65 billion private investment in public equity that closed last week, led by crypto heavyweights like Galaxy Digital, Jump Crypto, and Multicoin Capital. The company started deploying that capital this week, announcing it snatched up 6.8 million SOL for approximately $1.58 billion at an average price of $232…
Share
BitcoinEthereumNews2025/09/18 03:42
WhatsApp keeps doors open to rival AI bots in Brazil

WhatsApp keeps doors open to rival AI bots in Brazil

The post WhatsApp keeps doors open to rival AI bots in Brazil appeared on BitcoinEthereumNews.com. Meta Platform’s messaging services app, WhatsApp, is reportedly
Share
BitcoinEthereumNews2026/01/16 01:58