This article reviews the state-of-the-art in image-to-image translation, focusing on the evolution of GANs and CycleGAN for medical applications.This article reviews the state-of-the-art in image-to-image translation, focusing on the evolution of GANs and CycleGAN for medical applications.

From CycleGAN to DDPM: Advanced Techniques in Medical Ultrasound Image Synthesis

Abstract and 1. Introduction

II. Related Work

III. Methodology

IV. Experiments and Results

V. Conclusion and References

II. RELATED WORK

A. Image-to-image translation

\ Image-to-image translation is a domain of computer vision that focuses on transforming an image from one style or modality to another while preserving its underlying structure. This process is fundamental in various applications, ranging from artistic style transfer to synthesizing realistic datasets.

\ One seminal work in this field is the introduction of the Generative Adversarial Network (GAN) by Goodfellow et al. [7]. The GAN framework involves a dual-network architecture where a generator network competes against a discriminator network, fostering the generation of highly realistic images. Building on this, Zhu et al. introduced CycleGAN [8], which allows for image-to-image translation in the absence of paired examples. In the context of medical imaging, Sun et al. [9] leveraged a double U-Net CycleGAN to enhance the synthesis of CT images from MRI images. Their model incorporates a U-Net-based discriminator that improves the local and global accuracy of synthesized images. Chen et al. [10] introduced a correction network module based on an encoder-decoder structure into a CycleGAN model. Their module incorporates residual connections to efficiently extract latent feature representations from medical images and optimize them to generate higher-quality images.

\ B. Ultrasound image synthesis

\ As for medical ultrasound image synthesis, there have been achieving advancements due to the integration of deep learning techniques, particularly GANs and Denoising Diffusion Probabilistic Models (DDPMs) [11]. Liang et al. [12] employed GANs to generate high-resolution ultrasound images from low-resolution inputs, thereby enhancing image clarity and detail that are crucial for effective medical analysis. Stojanovski et al. [13] introduced a novel approach to generating synthetic ultrasound images through DDPM. Their study leverages cardiac semantic label maps to guide the synthesis process, producing realistic ultrasound images that can substitute for actual data in training deep learning models for tasks like cardiac segmentation.

\ In the specific context of synthesizing ultrasound images from CT images, Vitale et al. [14] proposed a two-stage pipeline. Their method begins with the generation of intermediate synthetic ultrasound images from abdominal CT scans using a ray-casting approach. Then a CycleGAN framework operates by training on unpaired sets of synthetic and real ultrasound images. Song et al. [15] also proposed a CycleGAN based method to synthesize ultrasound images from abundant CT data. Their approach leverages the rich annotations of CT images to enhance the segmentation network learning process. The segmentation networks are initially pretrained on the synthetic dataset, which mimics the properties of ultrasound images while preserving the detailed anatomical features of CT scans. Then they are then fine-tuned on actual ultrasound images to refine their ability to accurately segment kidneys.

\

:::info Authors:

(1) Yuhan Song, School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan (yuhan-s@jaist.ac.jp);

(2) Nak Young Chong, School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan (nakyoung@jaist.ac.jp).

:::


:::info This paper is available on arxiv under ATTRIBUTION-NONCOMMERCIAL-NODERIVS 4.0 INTERNATIONAL license.

:::

\

Market Opportunity
LiveArt Logo
LiveArt Price(ART)
$0.0004541
$0.0004541$0.0004541
+0.35%
USD
LiveArt (ART) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Japan’s Rate Hike Puts Bitcoin on Edge

Japan’s Rate Hike Puts Bitcoin on Edge

Japan's rate hike ends ultra-loose policies, impacting Bitcoin prices and global markets.
Share
CoinLive2025/12/22 07:43
How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

The post How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings appeared on BitcoinEthereumNews.com. contributor Posted: September 17, 2025 As digital assets continue to reshape global finance, cloud mining has become one of the most effective ways for investors to generate stable passive income. Addressing the growing demand for simplicity, security, and profitability, IeByte has officially upgraded its fully automated cloud mining platform, empowering both beginners and experienced investors to earn Bitcoin, Dogecoin, and other mainstream cryptocurrencies without the need for hardware or technical expertise. Why cloud mining in 2025? Traditional crypto mining requires expensive hardware, high electricity costs, and constant maintenance. In 2025, with blockchain networks becoming more competitive, these barriers have grown even higher. Cloud mining solves this by allowing users to lease professional mining power remotely, eliminating the upfront costs and complexity. IeByte stands at the forefront of this transformation, offering investors a transparent and seamless path to daily earnings. IeByte’s upgraded auto-cloud mining platform With its latest upgrade, IeByte introduces: Full Automation: Mining contracts can be activated in just one click, with all processes handled by IeByte’s servers. Enhanced Security: Bank-grade encryption, cold wallets, and real-time monitoring protect every transaction. Scalable Options: From starter packages to high-level investment contracts, investors can choose the plan that matches their goals. Global Reach: Already trusted by users in over 100 countries. Mining contracts for 2025 IeByte offers a wide range of contracts tailored for every investor level. From entry-level plans with daily returns to premium high-yield packages, the platform ensures maximum accessibility. Contract Type Duration Price Daily Reward Total Earnings (Principal + Profit) Starter Contract 1 Day $200 $6 $200 + $6 + $10 bonus Bronze Basic Contract 2 Days $500 $13.5 $500 + $27 Bronze Basic Contract 3 Days $1,200 $36 $1,200 + $108 Silver Advanced Contract 1 Day $5,000 $175 $5,000 + $175 Silver Advanced Contract 2 Days $8,000 $320 $8,000 + $640 Silver…
Share
BitcoinEthereumNews2025/09/17 23:48
Stablecoins Get A Break? US Lawmakers Propose Tax Relief

Stablecoins Get A Break? US Lawmakers Propose Tax Relief

Lawmakers in the US have put forward a discussion draft that would ease tax reporting for small stablecoin payments and let some crypto earners delay taxes on staking
Share
Bitcoinist2025/12/22 07:00