Blockchain transaction fees fluctuate due to limited block capacity and network congestion. The Fee Estimation based on Neural Network (FENN) framework tackles this challenge by combining three data sources—transaction features, mempool states, and network characteristics. Using deep learning methods like LSTM and attention mechanisms, FENN predicts future block behaviors and network trends to estimate optimal transaction fees. This dual-layer model—feature extraction and prediction—helps improve accuracy and efficiency in confirming blockchain transactions.Blockchain transaction fees fluctuate due to limited block capacity and network congestion. The Fee Estimation based on Neural Network (FENN) framework tackles this challenge by combining three data sources—transaction features, mempool states, and network characteristics. Using deep learning methods like LSTM and attention mechanisms, FENN predicts future block behaviors and network trends to estimate optimal transaction fees. This dual-layer model—feature extraction and prediction—helps improve accuracy and efficiency in confirming blockchain transactions.

The Future of Crypto Transactions? AI That Predicts Network Congestion

Abstract and 1. Introduction

  1. Preliminaries
  2. Problem definition
  3. BtcFlow
  4. Bitcoin Core (BCore)
  5. Mempool state and linear perceptron machine learning (MSLP)
  6. Fee estimation based on neural network (FENN)
  7. Experiments
  8. Conclusion, Acknowledgements, and References

7 Fee estimation based on neural network (FENN)

ue to the low block capacity, the majority of submitted transactions may experience various confirmation delays. Transactions are selected and added to the miner’s mempool after submission, where they compete for confirmation in the next block. A transaction is considered complete when it is recorded in a block in the blockchain. In the confirmation process, transaction fees are considered as an incentive to confirm transactions into the blockchain. To sum up, we summarize three groups of features that may influence the transaction confirmation:

\ – Transaction features, which describes the submitted transaction.

\ – Mempool states, which records the distribution of feerates of unconfirmed transactions in the mempool, implicitly modelling the competition among unconfirmed transactions.

\ – Network features, which reflects the characteristics of the mined blocks including block size, block generation speed, etc.

\ These three groups of features correspond to the three types of information fed to the estimation function F in Section 3. Although transaction features are already available in the submitted transaction, network features and mempool states are not known. However, such features are desirable, because if we had known how many transactions would be contained in future blocks, how fast future blocks would be generated, how competitive the submitted transaction would be in future mempools, we would increase the chance to predict the confirmation fee more accurately. Consequently, in FENN, our main idea is to predict network features and mempool states from historical state sequences by utilizing sequence learning models. Finally, we combine the three groups of features to do the estimation.

\ The prediction procedure can be formulated based on its data resources:

\

7.1 Estimation procedure

The estimation framework can be divided into two layers, one feature extraction layer to extract patterns from network features, mempool states and the submitted transaction itself, and one prediction layer to analyze the relationship between transaction fee and the extracted features. Fig. 4 shows the framework.

\ 7.1.1 Feature extraction layer

\ It includes three parts. Other than modelling the submitted transaction itself, the feature extraction layer also predicts the future characteristics of block states and model mempool competition states of the unconfirmed transactions.

\ 1. Transaction features contain information on the transaction that has been submitted and is awaiting confirmation. We pick features that we believe may affect a transaction’s validation and confirmation. The transaction vector contains:

\ – number of inputs, number of outputs Miners need to seek for the source transactions pointed to the new transaction’s inputs when confirming a transaction, which means that the number of transaction inputs and outputs affects the verification complexity.

\ – transaction version, transaction size and weight We use both transaction size of raw data and transaction weight to characterize transactions.

\ – transaction first seen time, confirmation timestamp and confirmation block height. The first-seen time refers to the time that a transaction is first observed. Because it’s difficult to determine the precise submission time of a historical transaction, we use the publicly available first-seen time.

\

\ 3. Network features are expected to encode future block size and generation speed, which can affect a transaction’s confirmation time. Historical network features are learned as a sequence to predict future network features.

\ – block size, block weight and transaction count We use three factors to characterize the size of a block, namely, the overall size of transactions (Bytes), the overall weight of transactions (Weight) and the transaction count in a block.

\ – difficulty It reflects the mining difficulty in the Bitcoin system, which is tuned to maintain an average 10-minute block frequency.

\ – block time The mining time of this block. It reveals the block generation speed.

\ – average feerate in block The average feerate of all the transactions in the block. This indicator is designed to reveal the feerate trend in continuous blocks.

\

\ Approach 1: LSTM [16] extract patterns by aggregating information on a token-by-token basis in a sequential order and summarizes the sequence into a context vector. To be specific, at each time step, LSTM maintains a hidden vector h and a memory vector c responsible for state updates and output prediction [18], and the final state is used as the extracted patterns from the sequence in our models:

\

\ Approach 2: Attention is another popular timeseries processing technique. It simulates the cognitive process of selectively concentration on different parts in psychology. In other words, it returns a new representation vector related to the importance at various positions in the sequence. Three state-of-the-art attention modules are applied below:

\ (a) Additive attention [3] computes the compatibility function using a feed-forward network

\ Fig. 4: FENN framework.

\ with a single hidden layer.

\

\ where W is a weight matric, and h is the hidden states in the former LSTM processing stage.

\

\ 7.1.2 Prediction layer

\ After aggregating inputs from the feature extraction layer, FENN is followed by a fully-connected neural network. By learning the relationship among historical block information, mempool data, and transaction details, FENN can provide a specific estimated feerate for each transaction. The testing instance of the estimated transaction consists of three parts: the block sequence, current mempool states and the transaction itself.

\

:::info Authors:

(1) Limeng Zhang, Swinburne University of Technology, Melbourne, Australia (limengzhang@swin.edu.au);

(2) Rui Zhou Swinburne, University of Technology, Melbourne, Australia (rzhou@swin.edu.au);

(3) Qing Liu, Data61, CSIRO, Hobart, Australia (q.liu@data61.csiro.au);

(4) Chengfei Liu, Swinburne University of Technology, Melbourne, Australia (cliu@swin.edu.au);

(5) M.Ali Babar, The University of Adelaide, Adelaide, Australia (ali.babar@adelaide.edu.au).

:::


:::info This paper is available on arxiv under CC0 1.0 UNIVERSAL license.

:::

\

Market Opportunity
FUTURECOIN Logo
FUTURECOIN Price(FUTURE)
$0,11859
$0,11859$0,11859
0,00%
USD
FUTURECOIN (FUTURE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Unexpected Developments Shake the Financial Sphere

Unexpected Developments Shake the Financial Sphere

The post Unexpected Developments Shake the Financial Sphere appeared on BitcoinEthereumNews.com. Japan’s recent move to hike its interest rate to 0.75 ahead of
Share
BitcoinEthereumNews2025/12/19 22:07
Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

The post Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued appeared on BitcoinEthereumNews.com. American-based rock band Foreigner performs onstage at the Rosemont Horizon, Rosemont, Illinois, November 8, 1981. Pictured are, from left, Mick Jones, on guitar, and vocalist Lou Gramm. (Photo by Paul Natkin/Getty Images) Getty Images Singer Lou Gramm has a vivid memory of recording the ballad “Waiting for a Girl Like You” at New York City’s Electric Lady Studio for his band Foreigner more than 40 years ago. Gramm was adding his vocals for the track in the control room on the other side of the glass when he noticed a beautiful woman walking through the door. “She sits on the sofa in front of the board,” he says. “She looked at me while I was singing. And every now and then, she had a little smile on her face. I’m not sure what that was, but it was driving me crazy. “And at the end of the song, when I’m singing the ad-libs and stuff like that, she gets up,” he continues. “She gives me a little smile and walks out of the room. And when the song ended, I would look up every now and then to see where Mick [Jones] and Mutt [Lange] were, and they were pushing buttons and turning knobs. They were not aware that she was even in the room. So when the song ended, I said, ‘Guys, who was that woman who walked in? She was beautiful.’ And they looked at each other, and they went, ‘What are you talking about? We didn’t see anything.’ But you know what? I think they put her up to it. Doesn’t that sound more like them?” “Waiting for a Girl Like You” became a massive hit in 1981 for Foreigner off their album 4, which peaked at number one on the Billboard chart for 10 weeks and…
Share
BitcoinEthereumNews2025/09/18 01:26
Adoption Leads Traders to Snorter Token

Adoption Leads Traders to Snorter Token

The post Adoption Leads Traders to Snorter Token appeared on BitcoinEthereumNews.com. Largest Bank in Spain Launches Crypto Service: Adoption Leads Traders to Snorter Token Sign Up for Our Newsletter! For updates and exclusive offers enter your email. Leah is a British journalist with a BA in Journalism, Media, and Communications and nearly a decade of content writing experience. Over the last four years, her focus has primarily been on Web3 technologies, driven by her genuine enthusiasm for decentralization and the latest technological advancements. She has contributed to leading crypto and NFT publications – Cointelegraph, Coinbound, Crypto News, NFT Plazas, Bitcolumnist, Techreport, and NFT Lately – which has elevated her to a senior role in crypto journalism. Whether crafting breaking news or in-depth reviews, she strives to engage her readers with the latest insights and information. Her articles often span the hottest cryptos, exchanges, and evolving regulations. As part of her ploy to attract crypto newbies into Web3, she explains even the most complex topics in an easily understandable and engaging way. Further underscoring her dynamic journalism background, she has written for various sectors, including software testing (TEST Magazine), travel (Travel Off Path), and music (Mixmag). When she’s not deep into a crypto rabbit hole, she’s probably island-hopping (with the Galapagos and Hainan being her go-to’s). Or perhaps sketching chalk pencil drawings while listening to the Pixies, her all-time favorite band. This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Center or Cookie Policy. I Agree Source: https://bitcoinist.com/banco-santander-and-snorter-token-crypto-services/
Share
BitcoinEthereumNews2025/09/17 23:45